

HT1200M HART Modem ASIC User Manual

MICROCYBER

Warning

- 1. All information in this document is the property of Microcyber and is provided for the use of chip customers only.
- 2. Reproduction and distribution in any form without written authorization from Microcyber is prohibited.

Version: V4.2

Disclaimer

The contents of this manual have been checked to confirm the consistency of the hardware described. Since errors cannot be completely excluded, absolute consistency cannot be guaranteed. However, we will periodically check the data in this manual and make the necessary corrections in subsequent versions. Any suggestions for improvements are welcome.

Microcyber Corporation 2023

Technical data is subject to change.

Company Introduction

Microcyber is a high-tech enterprise initiated and founded by Shenyang Institute of Automation, Chinese Academy of Sciences, mainly engaged in networked control system, industrial communication and instrumentation, development, production and application. Microcyber undertakes a number of national science and technology major projects, the National High Technology Research and 863 Program, intelligent manufacturing equipment development special projects and other national science and technology programs, is the national networked control system engineering research center construction relying on the unit.

Microcyber successfully developed the first internationally certified fieldbus protocol master stack, the first nationally certified fieldbus instrument, the first domestic safety instrument certified by TÜV, and co-chaired with other units the formulation of the first domestic industrial Ethernet protocol standard EPA and the first industrial wireless communication protocol standard WIA-PA, which became an IEC international standard.

Microcyber's products and technologies have won two National Science and Technology Progress Second Class Awards, one National Science and Technology Invention Award, one Chinese Academy of Sciences Science and Technology Progress First Class Award, and one Liaoning Province Science and Technology Progress First Class Award. The products are exported to many countries, and top companies in the industry, such as Emerson (USA), Rotork (UK), and Bifold (UK), have adopted key technologies or key components of Microcyber in their products and successfully completed more than 200 large-scale automation projects.

Microcyber is a member of the FCG organization; a member of the Profibus Nutzer Organization (PNO).

Microcyber has successfully passed ISO9001:2008 quality management system certification and ISO/TS16949 quality system certification for the automotive industry. Excellent R&D team, rich experience in automation engineering design and implementation, industry-leading products, large market network and excellent corporate culture have laid a solid foundation for the company's start-up and sustainable development.

Carrying employees' ideal, creating customer value and promoting enterprise development.

Contents

Chapter 1	Performance Features	. 1
Chapter 2	Pin Definition	. 2
Chapter 3	Pin Description	. 3
Chapter 4	Electrical Characteristics	. 4
Chapter 5	Mechanical Specifications	. 6
Chapter 6	Circuit Diagram	. 8
-	Ordering Code	

Chapter 1 Performance Features

The HT1200M is a low power modem chip that can be used in HART devices and requires only a few external components to modulate and demodulate HART signals.

HT1200M Features:

- Single, half-duplex 1200b/s rate frequency shift keying (FSK) modem
- Bell202 standard FSK frequency shift keying signal with 1200Hz and 2200Hz carriers
- Internal integrated receive band-pass filter circuit and transmit signal waveform shaping circuit
- External 460.8kHz crystal or ceramic filter internal clock oscillator or use external input clock
- Working temperature: -40 °C ~+85 °C
- Supply Voltage: 2.7V∼5.0V
- Meet HART physical layer requirements
- LQFP32 and QFN32 package
- Full compatibility with HT2015

Chapter 2 Pin Definition

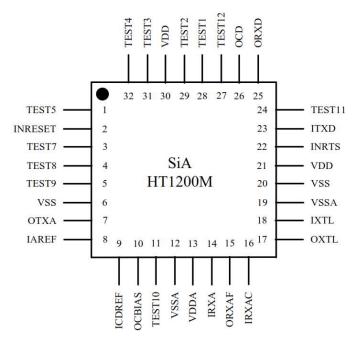


Figure 2.1 LQFP32 & QFN32 Pin Output

Chapter 3 Pin Description

Table 3.1 LQFP32 & QFN32

			Table 3.1 EQL 1 32 & QL 1132		
Pin	Definition	Туре	Description		
1	TEST5	input	Connect to VSS		
2	INRESET	input	Reset all digital logic circuits when the input is low		
3	TEST7	input	Connect to VSS		
4	TEST8	input	Connect to VSS		
5	TEST9	input	Connect to VSS		
6	VSS	ground	Digital Ground		
7	ОТХА	output	Modulated output transmit and transmit signal to 4-20mA loop. FSK modulated HART interface circuit.		
8	IAREF	input	Analog reference voltage		
9	ICDREF	input	Carrier detect reference voltage		
10	OCBIAS	output	Comparator bias current		
11	TEST10	input	Connect to VSS		
12	VSSA	ground	Analog ground		
13	VDDA	power	Analog supply voltage		
14	IRXA	input	FSK modulated HART receive signal from 4-20mA loop interface circuit		
15	ORXAF	output	Analog receive filter output		
16	IRXAC	input	Analog receive comparator input		
17	OXTL	output	Crystal oscillator output		
18	IXTL	input	Crystal oscillator input		
19	VSSA	ground	Analog ground		
20	VSS	ground	Digital ground		
21	VDD	power	Digital power supply input		
22	INRTS	input	Send request		
23	ITXD	input	Input transmission data. The HART data stream to be sent from the UART		
24	TEST11	NC	No connect		
25	ORXD	output	The received demodulated HART data is transmitted to the UART		
26	OCD	output	Carrier detection output		
27	TEST12	NC	No connect		
28	TEST1	input	Connect to VSS		
29	TEST2	NC	No connect		
30	VDD	power	Digital power supply input		
31	TEST3	NC	No connect		
32	TEST4	NC	No connect		

Chapter 4 Electrical Characteristics

Table 4.1

ABSOLUTE MAXIMUMS						
Symbol	Parameter	Min.	Max.	Units		
T _A	Environmental temperature	-40	+85	$^{\circ}$		
Ts	Storage temperature	-55	+150	$^{\circ}$		
V_{DD}	Supply voltage	2.7	5.5	٧		
V _{IN} , V _{OUT}	DC input and output voltage	-0.3	V _{DD} +0.3	V		
T _L	Welding temperature		250	$^{\circ}$		

Table 4.2

	DC CHARACTERISTICS (V_{DD} = 2.7V to 5.5V, V_{SS} = 0V, TA = -40°C to +85°C)						
Symbol	Parameter	V_{DD}	Min.	Typical	Max.	Units	
VIL	Input Voltage, Low	2.7-5.5V			0.3*V _{DD}	V	
VIL	INRESET、INRTS	2.7-3.3V	0.9	1.2	1.4	V	
V _{IH}	Input Voltage, High	2.7-5.5V	0.7*V _{DD}			V	
V _{IH}	INRESET、INRTS	2.7-3.3V	1.3	1.8	2.3	V	
V _{OL}	Output Voltage, Low (I _{OL} = -1.8mA)	2.7-3.3V			0.4	V	
V _{OH}	Output Voltage, High (I _{OH} = -1.8mA)	2.7-3.3V	V _{DD} -1.0			V	
C _{IN}	Input Capacitance Analog Input IRXA Digital Input		2.1 20.8 3.1			pF	
I _{IL/IH}	Input leakage current				±5	μA	
I _{OLL}	Output leakage current				±5	μA	
I _{DD}	Supply current (RBIAS= 500kΩ, IAREF = 1.235V)	3.3 5.0			170 200	μΑ	
IAREF	Analog voltage reference	3.3 5.0	1.2	1.235 2.5	2.6	V	
ICDREF	Carrier detection reference voltage (IAREF = 0.08V)			1.15		V	
OCBIAS	Comparator deviation current (RBIAS = 500kΩ, IAREF = 1.235V)			2.5		μΑ	

Table 4.3

Table 4.3							
	AC CHARACTERISTICS (V_{DD} = 2.7V to 5.5V, V_{SS} = 0V, TA = -40 $^{\circ}$ C to +85 $^{\circ}$ C)						
	(VDD - 2.7 V tO 3.5 V, VSS -	UV, IA –	-40 (10 +	000)			
Pin Name	Description	Min.	Typical	Max.	Units		
IRXA	Receive analog input Leakage current Frequency-Sign (Logic 1) Frequency-interval (Logic 0)	1190 2180	1200 2200	+/-150 1210 2220	nA Hz Hz		
ORXAF	High pass filter output Rotation rate Increase bandwidth Voltage range	150 0.15	0.025	VDD-0.15	V/µs kHz V/µs		
IRXAC	Carrier detection and receive filter input Leakage current			+/-500	nA		
ОТХА	Regulator output Frequency-Sign (Logic 1) Frequency-interval (Logic 0) Amplitude (IAREF =1.235 V) Slope Loading (IAREF =1.235 V)	30	1196.9 2194.3 500 2.84		Hz Hz mV p-p mV/μs kΩ		
ORXD	Receive digital output Rise / Fall time	20			ns		
OCD	Carrier detection output Rise / Fall time	20			ns		

Table 4.4

MODEM CHARACTERISTIC (V_{DD} = 2.7V to 5.5V, Vss = 0V, TA = -40 $^{\circ}$ C to +85 $^{\circ}$ C)				
Parameter	Min.	Typical	Max.	Units
Demodulator jitter Conditions: 1. Input frequency: 1200 Hz +/-10 Hz, 2200 Hz +/-20 Hz 2. Clock frequency: 460.8 kHz +/-0.1% 3. Input (HLXA) asymmetry, 0			12	% of 1 bit

Table 4.5

CERAMIC RESONATOR - EXTERNAL CLOCK SPECIFICATIONS (V_{DD} = 2.7V to 5.5V, V_{SS} = 0V, TA = -40°C to +85°C)					
Parameter Min. Typical Max. Units					
Oscillator Deviation Frequency		460.8	1%	% kHz	
External clock frequency Responsibility cycle Amplitude	456.2 40	460.8 50 V _{он} -V _{оL}	465.4 60	kHz % V	

Chapter 5 Mechanical Specifications

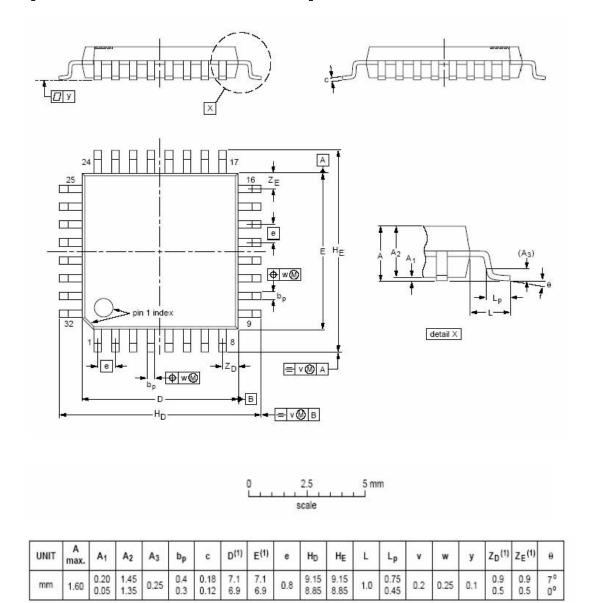


Figure 5.1 LQFP32 Dimensional drawings

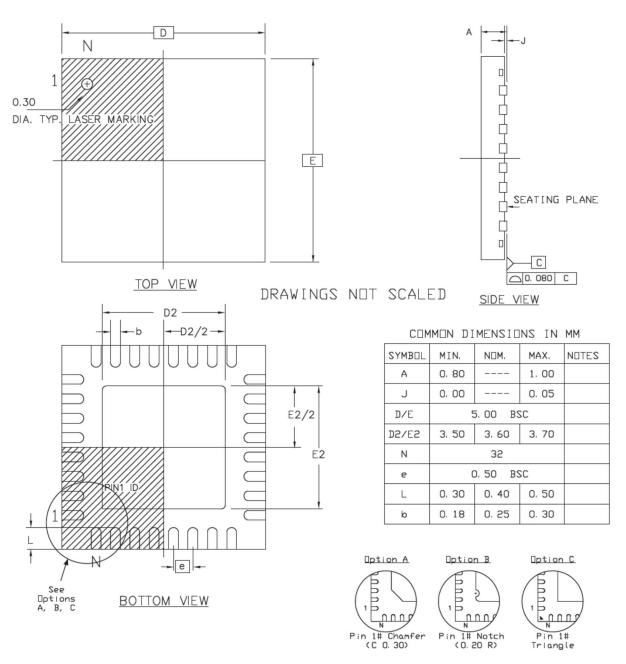


Figure 5.2 QFN32 Dimensional drawings

Chapter 6 Circuit Diagram

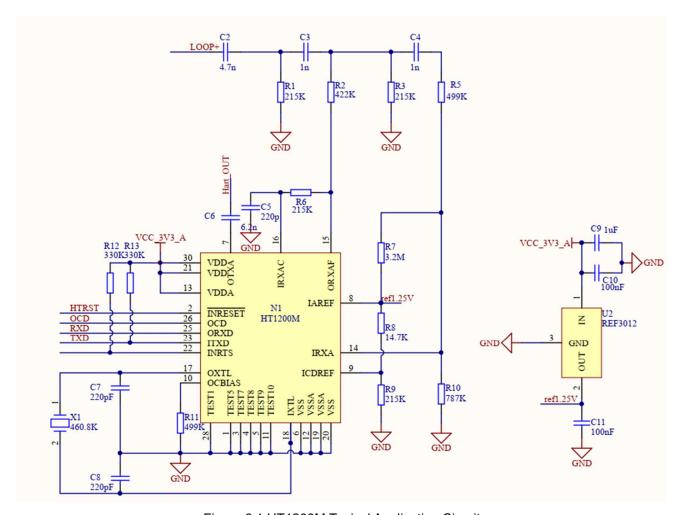


Figure 6.1 HT1200M Typical Application Circuit

Appendix 1 Ordering Code

HT1200M		HT1200M HAF	RT Modem AsIC Ordering Code
		Code	Package Type
·		L	LQFP32
Ì		Q	QFN32
HT1200M- L— Selection Example		Ĺ——	Selection Example (HT1200M-L, LQFP32 Package Type)

Microcyber

https://www.microcybers.com

Address: 17-8 Wensu Street, Hunnan New District, Shenyang, China

Postcode: 110179

Tel: 0086-24-31217295 / 31217296

Fax: 0086-24-31217293

Email: sales@microcyber.cn