

NCS-IF105 Current to Fieldbus Converter

Contents

Brief Introduction	1
Installation	2
Installation	2
Wiring	4
Principle and Structure	6
NCS-IF105F Configuration	10
Network Topology	10
Function Blocks	11
Configuration	12
Jumper	16
NCS-IF105P Configuration	17
Topology Connection	17
Function Block	18
Function Configuration	19
Jump-pin Configuration	32
Maintenance	
Technical Specification	35
Basic parameters	35
Technical performance	36
Physical performance	36

Brief Introduction

As intelligent transition device, NCS-IF105 converter receives 0~20mA or 4~20mA analog signal (4 channels) and converts into fieldbus signal. NCS-IF105 converter uses digital communication technology, and makes the interface between field device and controller easier, and reduces the expense of installation and maintenance.

NCS-IF105F converter fulfills the need of FF fieldbus intelligent instrument and can connect with several FF fieldbus devices.

NCS-IF105P converter fulfills the need of Profibus PA fieldbus intelligent instrument and can connect with several Profibus PA fieldbus devices.

NCS-IF105 converter has abundant function blocks and realizes not only normal measurement function also complex control strategy. In order to realize different function, user can choose different function blocks according to requirements and specific application environment.

Installation

Installation

For installation of NCS-IF105 converter, three types of bracket (pipe mounting flat bracket, plate mounting angle bracket and pipe mounting angle bracket) are provided. Accordingly there are three installation methods as the following.

The installation of pipe mounting flat bracket: the typical installation as Figure 2.1 shows. Fix NCS-IF105 converter in flat bracket using four bolts provided, and then fix the flat bracket on the vertical pipe in Φ 50mm around through the U-shape bolt provided.

The installation of plate mounting angle bracket: the typical installation as Figure 2.2 shows. Fix NCS-IF105 converter in angle bracket using four bolts provided, and then fix the angle bracket on the plate through the M10 bolt not provided.

The installation of pipe mounting angle bracket: the typical installation as Figure 2.3, 2.4 shows. Fix NCS-IF105 converter in angle bracket using four bolts provided, and then fix the angle bracket on the horizontal pipe in Φ 50mm around through the U-shape bolt provided.

http://www.microcyber.cn

MICROCYBER

Figure 2-4 The installation of pipe mounting angle bracket-2

Wiring

The power and signal of NCS-IF105 converter Transmitter are sharing one pair of cables (Bus Cable). NCS-IF105 converter is suggested to use specific Fieldbus cables recommended by the IEC61158-2. The wiring terminal is at the rear cover side, the wiring terminal board could be seen when the rear cover is screwed.

Figure 2.5 The wiring terminal board of NCS-IF105 Converter

Figure 2.6 Wiring of NCS-IF105 Converter (2- Wire)

Figure 2.7 Wiring of NCS-IF105 Converter (4- Wire)

Signal wires should be passed the wire hole. Sensor signal wires are single-point grounding. The Shield of the bus cable should be floating in converter side, and be grounding in bus power side.

The signal and bus cable should not share the line pipe or trunkings with other equipment, and should stay away from high-power equipment.

Principle and Structure

NCS-IF105 converter convert input current signal that generate by most conventional transmitters to fieldbus signal.

NCS-IF105 converter is consisted of five components, as shown in Figure 3.1.

- 1) Terminal board: it is used to connect with fieldbus, current output signal, A/D board and communication board.
- 2) A/D board: it can convert input current signal to digital signal provided to communication board.
- Communication card: it is core component of intelligent instrument, which implements the communication, control, diagnosis and maintenance of Foundation Fieldbus.
- 4) Isolation board: it is used for isolation between communication board and instrument board (power isolation and signal isolation).
- 5) LCD Card (optional): it is used to display function block parameters.

Figure 3.1 Schematic diagram of NCS-IF105 converter

Size of NCS-IF105 Converter

Figure 3.2 Size of NCS-IF105 Converter (unit: mm)

Structure of NCS-IF105 Converter

Figure 3.3 Structure of NCS-IF105 Converter

1	Front cover	2	O-ring	3	LCD cover	4	Electronics/LCD
5	Post	6	Communication board	7	Capture board	8	Isolation board
9	Terminal board	10	Screw	11	Wire hole	12	Screw
13	Name plate	14	Z/X button	15	Housing	16	Pin/block
17	Rear cover	18	Bottom cover				

As the core of NCS-IF105 converter, the Communication Card connects with terminal board, isolation board, instrument board and LCD board. The LCD board rotated in four angles is fixed on the Communication board, as Figure 3.4 shows.

Figure 3.4 Assembly structure of the meter

NCS-IF105F Configuration

Network Topology

A FF transmitter supports many kind of connection, As shown in figure 4.1. The classic connection modes for a FF device is bus connection, As shown in figure 4.2. The matching resistance on the both side of terminal ensures a good quality of signal. The maximum length of fieldbus is 1900 meters and can be prolonged to 10 kilometers using repeaters.

Figure 4.1 FF Network Topology

Figure 4.2 FF Bus Connections

Function Blocks

Function Block	Description
Baseuras	This block contains data from the hardware that is
Resource	associated with the resource.
Transducer	This block converts input/output device variables
Block	into relevant engineering data.
Display	This block configures process variables displayed in
Transducer	LCD.
	This block transmits the input data from the
Analog Input	transducer block to other function block. It has
Analog input	scaling conversion, filtering, square root and low
	cut, etc
PID Control	This block has a lot of features as set point
	treatment (value and rate limiting), filtering and

	alarm on PV, feed-forward, output tracking and
	others.
Patio	This block realizes ratio control between two input
Kallo	data.
	This block has four analog inputs that may be
Innut Coloctor	selected by an input parameter or according to a
Input Selector	criterion as first good, maximum, minimum, middle
	and average.
	This block has capability for two signal
Signal	characteristics based on the same curve. The
Signal	second input has an option for swapping "x" to "y",
Characteristic	and inverse function may be used in signal
	characteristic of read-back variables.
	This block provides dynamic compensation of a
Lead Lag	This block provides dynamic compensation of a variable. It is used normally in a feed-forward

Configuration

NCS-IF105F transmitter can be configured by the Configurator software and NCS4000 DCS software of Microcyber Inc, NI-FBUS Configurator of National Instrument, and DeltaV system of Rosemount.

• Environments

- 1) Windows 2000 or Windows XP system;
- NCS-LD105 Linking Device, H1 Bus Power, H1 Terminal Matcher;
- 3) FF Configurator;

• Two point calibration

The transmitter can be calibrated by the parameter CAL_POINT_HI and CAL_POINT_LO:

- 1) Input the standard current signal to the channel that will be calibrated. Such as 4 mA.
- Read the actual current value from the parameter PRIMARY_VALUE of transducer block. For example, it is 3.9 mA.
- Set the mode of transducer block to O/S, and then change the parameter SENSOR_CAL_METHOD to "User Trim Standard Calibration".
- 4) Write the value of 4 mA to the parameter CAL_POINT_LO. If the parameter is written with no error, the low calibration would be successful. Please note that calibration value must be in the range of sensor maximum measurement. The calibration value must not have much difference from actual value, or the calibration will be failed.
- 5) Set the mode of transducer block to AUTO.
- The upper value calibration is the same the lower value calibration. Please write the new upper value to the parameter CAL_POINT_HI while calibrating.

• LCD Configuration

By default, the transmitter LCD displays the parameter PRIMARY_VALUE value of the first channel of transducer block.

As is shown in the figure 4.3, if user need displays other parameter of other block, please follow the steps below. (X is equal to 1, 2, 3 or 4, the LCD display transducer block can display four kinds of parameter cicely.) The LCD will show CONFIG_ERR if it receives a wrong configuration parameter. Please set the mode to O/S and correct the configuration parameter then set the mode back to AUTO so that it display normally.

- BLOCK_TAG_X: This parameter defines the tag name of function blocks. For example, if user wants to display a parameter of Al1 function block, he should write "Al1" to this parameter. Please note that the length of written char should be equal to 32 bytes. If the length of char is smaller than 32, please insert blank char to make its length equal to 32.
- RELATIVE_INDEX_X: This parameter defines the index of the parameter of function blocks. For example, if user wants to display the OUT parameter of AI1 block, please write 8 to the RELATIVE_INDEX_X.
- SUB_INDEX: This parameter defines the sub index of the parameter of function blocks. For example, if user wants to display the OUT.VALUE of AI1 block, please write 2 to this parameter.
- MNEMONIC_X: This parameter defines the text which will be displayed in the LCD. The maximum length of text is 16 bytes.

- 5) DECI_PNT_NUMB_X: This parameter defines the position of decimal point for displayed value.
- 6) ACTIVE_X: This parameter wills active the display function of the group.

NCS-IF105@74EF68 : DISPLAY (DSPLAY)	5P)		_ 🗆 🗙
P1 #1 ●1 #1 #1 □ 自动定时更新 5 → 秒			
All Input Output Alarm	Tune Customized		
参数名称 △	当前值	参数类型	
ST_REV	0x0001	UINT (2 Bytes)	
TAG_DESC		Octet String	
	0x0001	UINT (2 Bytes)	
ALERT_KEY	0x01	UINT (1 Byte)	
MODE_BLK			
BLOCK_ERR	(0x0000)	16 Bit Enum	
BLOCK_TAG_1	AI1	Visible String	
RELATIVE_INDEX_1	0x0009	UINT (2 Bytes)	
SUB_INDEX_1	0x02	UINT (1 Byte)	
MNEMONIC_1	OUT1	Octet String	
INC_DEC_1	0.000000	Float	
DECI_PNT_NUMB_1	0x02	UINT (1 Byte)	
ACCESS_1	en Monitoring (0x00)	Enum (UINT 8)	
ALPHA_NUMB_1	en Alpha (0x00)	Enum (UINT 8)	
ACTIVE_1	en True (0x01)	Enum (UINT 8)	
BLOCK_TAG_2		Visible String	
RELATIVE_INDEX_2	0x0000	UINT (2 Bytes)	
SUB_INDEX_2	0x00	UINT (1 Byte)	
MNEMONIC_2		Octet String	
INC_DEC_2	0.000000	Float	
DECI_PNT_NUMB_2	0x02	UINT (1 Byte)	
ACCESS_2	en Monitoring (0x00)	Enum (UINT 8)	
ALPHA_NUMB_2	en Alpha (0x00)	Enum (UINT 8)	
ACTIVE_2	en False (0x00)	Enum (UINT 8)	
BLOCK_TAG_3		Visible String	
RELATIVE_INDEX_3	0x000e	UINT (2 Bytes)	
	0x02	LIINT (1 Byte)	

Figure 4.3 LCD Configuration

Jumper

NCS-IF105 transmitter has three hardware jumpers:

SIM Jumper: Simulate jumper. It enables the simulation of the transmitter.

WP Jumper: Hardware write lock jumper. It can prevent operator from changing the configuration of the transmitter.

RST Jumper: Factory default reset jumper. It will set the configuration of transmitter to factory default value.

Figure 4.4 NCS-IF105 transmitter hardware jumpers

NCS-IF105P Configuration

Topology Connection

• Transmitter topology connection

A PROFIBUS PA transmitter supports many net topologies shown as Figure 5-1., shows the bus connection of PA instrument is shown in Figure 5-2, in order to ensure the bus signal quality, the terminal matching resistances should be connected to the 2 ends of the bus. The bus maximum length is 1900m, with a repeater, the length can be extended to 10 kilometers.

Figure 5-1 PROFIBUS PA Network Topology

Figure 5-2 PROFIBUS PA BUS CONNECTIONS

Function Block

PA Smart Transmitter realizes the PA standard function block, as the table shown as the table below. Please refer to PROFIBUS PA specification for function block configuration methods.

Function Block Name	Description
Physical Block	$\label{eq:Physical block} Physical \ block (PB) \ describes \ the \ information \ of$
	device specific hardware info, recognization info
	and diagnose info including device bit number,
	software version, hardware version, installation

	date,etc.
	Transducer block separates the function block
	from instrument input/output characteristic. It
Transducer Block	carries out the function of input/output data
	calibration and linearization,etc, and transfer the
	data to AI function block via inner channel.
	Analog input block achieves analog process
Analog Input	value via inner channel and process the value,
Block	and then provides the right measurement value
	to master device via bus communication.
	Totalizer block achieves flow instantaneous
Totalizer Block	value via inner channel and cumulates value,
	and then provides the cumulated value to
	master device via bus communication.

Function Configuration

Please refer to 4.2 Adjusting for PA Smart Transmitter for detailed info about range setting, zero setting, bus address and data recovery of PA smart transmitter.

• Environment Settings

- 1) PC with Windows 2000 or Windows XP,
- 2) SIEMENS Step7 configuration software, SIEMENS PDM device management software,
- 3) DP/PA coupler or connector,
- Class 1 master station such as PLC, Class 2 master station such as CP5611 board,

- 5) PA Terminal matcher,
- 6) Standard pressure source.

• Transducer block parameter configuration

The transmitter block separates the function block, sensor and special I/O device, it relys on device manufacture to access or control I/O device. Through the access to I/O device, the transducer block can achieve input data or set output data. Generally, the transducer block has the function of linearization, specialization, temperature compensation, control and exchange data, etc. The structure is shown as Figure 5-3.

Figure 5-3 Transducer Block Structure

Parameter description as following:

Parameter				Descrip	otion	
CAL_MIN_SP	The	allowable	minimum	calibration	span	is
AN	nece	ssary to en	sure that ca	alibration is (done w	ell,

	and the two calibration points (highest and lowest)		
	are not too close together. The unit is decided by		
	SENSOR_UNIT.		
	When the calibration is at the highest point, it will		
	transfer the pressure signal at the highest point to		
	sensor, and the sensor will write the value to		
п	parameter as the highest value at the calibration		
	point. The unit is decided by SENSOR_UNIT.		
	When the calibration is at the lowest point, it will		
CAL_POINT_	transfer the pressure signal at the lowest point to		
LO	sensor, and the sensor will write the value to		
	parameter as the lowest value at the calibration		
	point. The unit is decided by SENSOR_UNIT.		
FLOW_LIN_S	Flow colculation coofficient		
QRT_POINT			
LIN_TYPE	Linearization type		
LOW_FLOW_			
CUT_OFF			
MAX_SENSO	Sensor maximum pressure value, and unit is		
R_VALUE	decided by SENSOR_UNIT.		
MIN_SENSO	Sensor minimum pressure value, and unit is		
R_VALUE	decided by SENSOR_UNIT.		
MAX_TEMPE	Sensor maximum temperature value, the unit is		
RATURE	Celsius.		
MIN TEMPE	It holds the minimum temperature. Sensor		

RATURE	minimum temperature value, the unit is Celsius.
PRIMARY_VA LUE	Transmitter measurement value and status, are available to AI function block. The unit is decided by PRIMARY_VALUE_UNIT.
PRIMARY_V ALUE_TYPE	Transmitter measurement value type, code as following: 0: Pressure 1: Flow 2: Level 3: Volume 4-127: Reversed > 128: Manufacturer specific By now, it only supports 0 and 1.
PRIMARY_V ALUE_UNIT	Transmitter measurement value engineering unit code
PROCESS_ CONNECTIO N_MATERIAL	Process connection material code
PROCESS_ CONNECTIO N_TYPE	Process connection material type code
SCALE_IN	Sensor input range, the unit is decided by SECONDARY_VALUE_1_UNIT.
SCALE_OUT	Sensor output range, the unit is decided by SECONDARY_VALUE_1_UNIT.

SECONDARY _VALUE_1 SECONDARY	This parameter contains the Pressure value and status available to the Function Block. Measurement value and status after modification and unit exchange, are available to AI function block.
_VALUE_1_U NIT	SECONDARY_VALUE_1 engineering code
SECONDARY	Percentage value after input range exchange is
_VALUE_2	available to AI function block.
SECONDARY	
_VALUE_2_U	SECONDARY_VALUE_2 engineering code
NIT	
SENSOR_DI	
APHRAGM_	Sensor diaphragm type code
MATERIAL	
SENSOR_FIL	Sensor fill-liquid type code
L_FLUID	
SENSOR_HI_	Sensor physical upper range
LIM	
SENSOR_LO	Sensor physical lower range
_LIM	Consol physical lower range
SENSOR_MA	
X_STATIC_P	Sensor maxmimum static pressure
RESSURE	
SENSOR_O_	Type code for O ring between sensor diafhragm

RING_	and process connection	
MATERIAL		
SENSOR_SE		
RIAL_	Sensor serial number	
NUMBER		
SENSOR_TY	Songer type	
PE	Sensor type	
SENSOR_UN		
IT	Sensor original data unit	
SENSOR_VA	Senser erizinal data valua	
LUE		
TEMPERATU	Sensor temperature value	
RE		
TEMPERATU	Concertamporature value unit new it is Coloive	
RE_UNIT	Sensor temperature value unit, now it is ceisius.	
TRIMMED_V	Process value after colibration	
ALUE		

• **PROFIBUS Cycle Data Communication Confuguration** PROFIBUS DP cycle data communication means Class 1 master station and slave station exchang input and output data in the polling method. The method is unconnected. In each cycle period, Class 1 master station sends data exchange request, and slave station responses the request. Cycle data communication is mainly used for configuration between slave station and PLC master station ,due to the cycle data communication, master station PLC gets input data from slave

station real-time, or transfer the output data to the slave station. PA smart transmitter cycle data communication configurationis the same as PROFIBUS DP slave, we only need to add a coupler or a linker between PA BUS and DP BUS.

PA smart transmitter cyber data comes from AI function block parameter in the device. There are 5 bytes in total, including 4 bytes for pressure value floating-point data and 1 byte status data.

There are 2 standard function blocks, AI and TOT, as well as a vacant function block. If there is only one function block is necessary, you should configure the vacant function block. For example, is only AI function block is necessary, you should configure AI function block and the vacant function block.

For cyber communication, transmitter supports many identifiers. For AI, there are long and short identifiers. For TOT, there are Total,Mode_Total and Set_ Total identifiers, shown as following:

Δ1	Short	0x94	
AI	Long	0x42,0x84,0x08,0x05	
	Total	0x41,0x84,0x85	
тот	Total, Mode_Total	0xC1,0x80,0x84,0x85	
	Total, Mode_Total, Set_		
	Total	0x01,0x01,0x04,0x05	

User may use SIEMENS Step7 for PROFIBUS PA configuration

cycle data communication .Open SIMATIC Manager, select PLC master station and create a new project, shown as Figure 5-4.

Figure 5-4 Select PLC master station, and create new project Click hardware twice to open Hardware Configuration in HW Configuration Software. On the menu of Option, select "Install GSD" in Option list, shown as Figure 5-5.

R HW Config - [SIMATIC 300 Station (Configuration) S7_Pro1]	
👪 Station Edit Insert BLC Wew Options Window Help	
D 🚅 🐎 🔍 🚳 🐁 🛍 🎪 🚯 🚍 💥 👷	
	A I I I I I
	Find: attail
Install GSD Files	- X - Internet
	andard 💌
1 Install GSD Files: from the directory 💌	US DP
2 CPU 315-2 DP ()	US-PA Browne
	growser
4 File Release Version Languages	crete Input
5 Default	icrete Output
	ote I/O
8	sors
9	05 P
	ET IO
	C 300
	C 400 C PC Result Casteral 200/400
The file (WYEDERS and contains surface evens	C PC Station
the tite schoold, gat concluse synchronics.	
Install Show Log Select All Deselect	411
Close	Help
	NES-PT105 Pas-sas
	 Pressure transmitter for pressure level PROFILE PARTENS PA Profile 3.1 with
<	I function block: Analog input -
Press F1 to get Help.	

Figure 5-5 Install GSD file

When GSD files is successfully installed, at the right side of HW Configuration software you can see the device we have just installed from PROFIBUS-PA. Using your mouse to select and drag it to PROFIBS DP BUS, shown as Figure 5-6.

Figure 5-6 Drag PA device to the PROFIBUS DP Bus

Select Download configuration information to PLC master station in the PLC list. It is the last step for the communicarion configuration between PA instrument and master station cyber data, shown as Figure 5-7.

HW Config - [SIMATIC	300 Station (Configuration) S7_	Pro1]					
🛐 Station Edit Insert E	PLC View Options Window Help					_ 8 ×	
🗅 🧀 🔓 🖬 🤬 🤞	Download	Ctrl+L					
-	Upicad			A		(Dixi	
	Download Module Identification			- m	Find	attail attail	
	Upload Module Idegtification to PG				Lana.		
🔁 (0) UR	Eaulty Modules				Profil	Standard 💌	
1 2 3 3 4 5 5 7 7 9 10 11 7 11 7 7 8 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	Modul promotion Georgiantic Modu. Charginest Set The of Ogy Epstate/Modify Update Finneers Save Degion Kame to Henory Card Ephernet BoorBub Save Service Data	Ctri+D Ctri+I	HOTELE (): If easter system ()			OFTHE DF OFTHE FF Storest Lupt Storest Lupt Discret Output Discret Dupt Discret FO Discret FO Discret FO Discret FO Discret FO Stores FO Stores FO Discret	
				Drag	PA	instrument into the	fieldbus
٠				PRC	Pressure and flow	transitter for pressure level , PROFILING TA Profile 3.1 with on block: Analog input	
Loads the current station into t	the load memory of the current module.						

Figure 5-7 Download the configuration to PLC

PROFIBUS non-cycle data communication configuration

PROFIBUS DP non-cycle data communication meansfacing linking data communication between Class 2 master station and slave station. It is under the circumstance without affection cyber data communication and in the non-cycle period. Non-cycle data is mainly PA function block parameter, recognization and diagnoseinfo,etc. Non-cycle data communication is mainly applied in PA device management, diagnose, recognization, calibration, maintenance,etc.

User may use SIEMENS device management software SIMATIC PDM for non-cycle data communication configuration of PROFIBUS PA transmitters.

Here is an example:

Before the configuration, please add manufacture info.

Find manufacturer.csv file in ...\Siemens\Step7\S7BIN. Add "Microcyber Inc.;Microcyber Inc.;;;;Microcyber Inc.;0x016C" Open SIMATIC PDM Lifelist Software; select Start Scan DP bus from Scan list, shown as Figure 5-8.

Figure 5-8 Start LifeList

After the bus is scanned, the slave devices in DP bus will be listed, at the same time the device ID and some diagnose info will be shown, shown as Figure 5-9.

Figure 5-9 Scan DP bus list PA devices

Click PA device twice will start SIMATIC PDM software. According to this software, you can write / read parameter and diagnose PA device. At the popup box, for PA instrument type, choose Device Catalog, to aff GSD file. If it's NCS-IF105 PA transmitter, you may choose Microcyber Inc\NCS-IF105 shownas figure 5-10.

Figure 5-10 Select device type

When device type is selected, click "OK", now you have finished the configuration. According to the functions of download and upload of PDM software, you can complete writing and reading parameters, shownas figure 5-11.

SIMATIC PDM - NCS PT105 II [Temporary	project]				
File Device View Options Help					
🛛 🅭 🛍 🏜 🖪 🏭 🕅					
Antworks	Parameter	Value	Unit	Status	Name in DD 🔺
B- 2 7704C7891AC44D5	Pressure Meter				
	» Identification				Tab_m_ident
Pressure Meter	» » Operation Unit				Tab_m_ident_opunit
🗄 🛍 Identification	TAG	NCS PT105 II		Changed	phys_tag_desc
🕀 🧰 Input	Descriptor			Initial value	phys_descriptor
🗄 🔂 Output	Message			Initial value	phys_message 🗧
Operating Conditions	» » Device				Tab_m_ident_device
Sensor Calibration	Manufacturer	Unknown		Initial value	phys_device_man_id
Certificates and Approvals	Product designation			Initial value	phys_device_id
	Device Serial Num			Initial value	phys_device_ser_num
	Software Revision	1		Initial value	phys_software_rev
	Hardware Revision	1		Initial value	phys_hardware_rev
	Profile Revision	3.0		Initial value	phys_blk_profile_rev
	Static Revision No.	0		Initial value	phys_st_rev
	PROFIBUS Ident Number	Profile specific		Initial value	phys_ident_number
	Installation Date	01.10.1998		Initial value	phys_install_date
	» Input				Tab_m_input
	» » Transducer Block 1				Tab_m_trans1
	Static Revision No.	0		Initial value	trans1_st_rev
	Transmitter Type	Pressure		Initial value	trans1_primary_value_type
	» » » Measuring Limits				Tab_m_trans1_input_meas
	Unit Pressure Raw Value	bar		Initial value	trans1_sensor_unit
	Lower Value Min	0	bar	Initial value	trans1_sensor_low_limit
	Upper Value Max	0	bar	Initial value	trans1_sensor_high_limit
	» » » Measuring Range				Tab_m_trans1_input_meas
	Unit (Secondary Value 1)	Pa		Initial value	trans1_secondary_value_1_u
	Lower Value	0	Pa	Initial value	trans1_scale_in_lower_value
	Upper Value	1	Pa	Initial value	trans1_scale_in_upper_value
	» » » Working Range				Tab_m_trans1_input_work
	Unit	bar		Initial value	trans1_primary_value_unit
	Lower Value	0	har	Initial value	Itrane1 ecolo nut Inwor value
University PO/PC			Maintanan		la connection
opuau to PolPolliciuseu			maintenan	ie I	NUM NUM

Figure 5-11 Use PDM software to manage device

Jump-pin Configuration

PA smart transmitter has three hardware jumpers, at present you can use two of them, shown as Figure 5-12, J3 is non-used.

RST Jumper:Reset jumper will reset the transmitter data back to factory. It is the same as the operation for data back to factory with magnetic bars shown as Chapter 5.4. Please make the transmitter powered off, insert the jumper to RST, and then power the transmitter on, the data will be back to factory data, shown as Figure 5-13.

Attention: After the operation for data back to factory with RST jumper, please turn off instrument power again, pull out the RST jumper, then use the instrument normally. Otherwise if you keep RST jumper like this, when next time you restart the instrument, all data will be back to factory. the configuration info before power off will be lost.

Figure 5-12 PA smart transmitter hardware jumpers

Maintenance

Phenomenon	Solution				
	Transmitter of	connection			
	Check the bus connection				
	Check the polarity of bus power				
	Check shield of bus cable, if it is single point				
	earthing				
	Bus power				
	Bus power should in the range 9 ~ 32V for the				
	transmitter.				
	Bus noise and ripple should fulfill:				
	1)	peak-to-peak value noise is 16mV,			
No		7~39kHz;			
Communication	2)	peak-to-peak value noise is 2V,			
Communication		47~63HZ, for non-EX			
	3)	peak-to-peak value noise is 0.2V,			
		47~63HZ, for EX			
	4)	peak-to-peak value noise is 1.6V,			
		3.9M~125MHZ.			
	Network connection				
	Check network topology structure				
	Check terminal matcher and wire connection				
	Check the length of main trunk and branch				
	Address con	flict			
	The factory d	efault address if a temporary address			

	from 0xF8 to 0xFB. If there are more devices with				
	temporary address, some device will not				
	communicate online. Please insure that there are				
	not too many devices with temporary address on				
	the bus.				
	Transmitter fault				
	Replace the transmitter with others.				
	Transmitter connection				
	Check if it is short circuit or open circuit.				
	Check if it is the fault of transmitter itself.				
	Noise disturb				
Foil to road	Check if the earthing is correct.				
Fail to read	Check if the terminal is wet.				
value from	Check if the cable is far from the strong				
transmitter	Electromagnetic Interference				
	Software configuration				
	Check the function block configuration				
	Transmitter fault				
	Replace the transmitter with others.				

Technical Specification

Basic parameters

Input signal	4~20mA			
Channels	4 Channels			
Power oursely	9 \sim 32 VDC ;Current Dissipation			
Power supply	(static): ≤ 14mA			
Fieldhue Signal	Communication Baudrate 31.25kbit/s,			
rielabus Signai	current-mode			
Inculation	Between housing and terminal board:			
insulation	500 Vrms (707 VDC)			
Display	6 bits digital number and 5 bits			
Display	characters LCD display (Optional)			
	- 40 \sim 85°C (No display)			
remperature range	- 30 \sim 70°C (display)			
Humidity Range	0% \sim 100% RH			
Start Time	≤ 5s			
Protection grade	IP 65			
EMC	Designed to comply IEC 61000			

Technical performance

Accuracy	< 0.05 %;
Input impedance	150 Ω
Temperature effect	< ± 50 ppm/ ℃

Physical performance

Electrical connection	1/2 - 14 NPT
Material of Construction	Aluminum
Weight	1.1 kg