

沈阳中科博微自动化技术有限公司

- 1. 禁止用户自行拆换器件。
- 2. 请用户自行检查模块供电电压是否符合使用手册中的供电电压要求。

版本: V1.3

免责声明

已经检查过此手册的内容,确认所描述的硬件和软件的一致性。由于无法完全排除误差,不能保证绝对一 致。然而我们将定期检查此手册中的数据,并在后续版本中予以必要的修正。欢迎任何关于改进的建议。

Microcyber Corporation 2015

技术数据随时有变。

公司简介

沈阳中科博徽自动化技术有限公司是由中国科学院沈阳自动化研究所发起创建的一家高新技术企业, 主要从事网络化控制系统、仪表、芯片及软件方面的研究、开发、生产和应用。公司同时承担着多个国家 科技攻关和"863"项目,是辽宁省网络化控制系统工程研究中心。公司成功地开发出国内第一个通过国际认 证的 FF H1 现场总线协议主栈,国内第一套工业以太网协议(HSE),国内第一个经过国家级本安防爆认 证的现场总线仪表及安全栅,参与制定了国内第一个基于以太网的工厂自动化协议标准(EPA),形成了从 组态、监控软件、嵌入式软件、控制系统、仪表芯片到 OEM 板卡的系列化产品。

博微公司是 FF 基金会成员;是 HART 基金会成员;是 Profibus 用户组织(PNO)成员。

博微公司通过了 ISO9001: 2000 质量管理体系认证,拥有优秀的研发团队、丰富的自动化工程设计 与实施经验、业界领先的产品系列、庞大的市场网络、优秀的企业文化,这些都为公司的创业和持续发展 奠定了坚实基础。

承载员工理想,创造客户价值,促进企业发展。 博微公司正与前进的中国共同进步。

目 录

第1章	概這	杜	3
1.1	模址	央特点	3
	1.1.1	同尺寸	3
	1.1.2	同接口	
	1.1.3	易升级	3
	1.1.4	配置简单	3
1.2	产品	品开发工作流程	4
1.3	外开	ド尺寸	5
1.4	模址	央结构	5
第2章	安装	专	6
2.1	模坦	央对外接口	6
	2.1.1	用户接口 JP1 管脚定义及说明(16 针接插件)	6
	2.1.2	特殊功能拨码开关 S1	6
	2.1.3	特殊功能拨码开关 S2	7
2.2	模地	央安装	7
第3章	工作	乍原理	8
3.1	工作	乍模式	8
	3.1.1	配置模式	9
	3.1.2	正常工作模式	9
	3.1	2.1 初始化阶段	9
	3.1	2.2 非循环阶段	
	3.1	2.3 循环阶段	
第4章	模址	央配置	
4.1	拓打	卜结构	
4.2	功能	能块说明	
4.3	Use	r 变换块参数	
	4.3.1	BAD_STATUS 参数描述	
	4.3.2	负响应检测参数描述	
	4.3.3	User 变换块循环输入输出参数	15
	4.3.4	User 变换块非循环参数	15
4.4	模址	央配置	
	4.4.1	整机设备初始化参数配置	
	4.4.2	Modbus 通信参数配置	
	4.4.3	循环输入输出参数配置	
	4.4.4	非循环参数配置	
	4.4.5	生成 GSD 文件	19
4.5	设备	备使用	19
	4.5.1	设置从站地址	
	4.5.2	设备循环组态	
	4.5	2.1 GSD 文件说明	
	4.5	2.2 安装 GSD 文件	21

	\mathbf{N}	 中科博微 M0307 Modbus转PA嵌入式模块使用手册 MICROCYBER	}
		4.5.2.4 使用 GSD 文件	22
		4.5.2.5 行规 GSD 文件	23
第5章		GSD 文件、ID 号以及产品认证测试	24
5.1		GSD 文件、ID 号以及产品认证测试的介绍	24
	5.1.1	GSD 文件(Electronic Data Sheet)	24
	5.1.2	ID 号(Ident Number)	25
	5.1.3	产品认证测试	25
5.2		用户产品的 GSD 文件、ID 号	25
5.3		设备描述文件	25
第6章		维护	26
第7章		技术规格	26
7.1		基本参数	26
7.2		性能指标	26
7.3		物理特性	26
7.4		默认通讯参数	27
7.5		支持 Modbus 功能码	27
附录 1		产品选型	27

M0307 Modbus 转 PA 嵌入式模块是沈阳中科博微自动化技术有限公司研发的 Microcyber M 系列嵌入式 模块之一。此系列嵌入式模块具有同尺寸,同接口,易升级,配置简单等特点,是用户快速开发现场总线 设备的理想选择。通过将 M0307 嵌入到具有 Modbus-RTU 通信能力的用户设备中,即可实现将用户设备变 为 Profibus PA 从站。替换成 M 系列其他模块,即可快速实现 Profibus DP、FF、HART 等现场总线设备。M0307 如图 1.1 所示:

图 1.1 M0307 Modbus 转 PA 嵌入式模块

1.1 模块特点

1.1.1 同尺寸

Microcyber M 系列嵌入式模块尺寸相同,65mm(长)*42mm(宽)。

1.1.2 同接口

Microcyber M 系列嵌入式模块均采用 2.54 间距 16 针接插件,功能兼容。

1.1.3 易升级

替换 Microcyber M 系列不同的嵌入式模块,即刻实现不同协议的设备。

1.1.4 配置简单

使用 Microcyber 专用配置工具进行配置,操作简单,使用方便。

1.2 产品开发工作流程

1.3 外形尺寸

中科博微

MICROCYBER

1.4 模块结构

图 1.3 嵌入式模块结构

1	拨码开关 S1	2	拨码开关 S2	3	LED2 Modbus 通信指示
4	通信接口	5	LED1 PA 通信指示		

2.1 模块对外接口

2.1.1 用户接口 JP1 管脚定义及说明(16 针接插件)

用户接口提供给模块一路信号隔离直流电源。还提供了两卡之间的串行接口,以及指示灯等功能,具 体描述看下表。

图 2.1 用户接口管脚定义及外型尺寸

如图 2.1 所示,用户接口采用 16 针接插件,具体管脚定义如下:

表 2.1 用户接口管脚定义

管脚	I/O	名称	说明	管脚	I/O	名称	说明
1	I	VCC_IS	信号隔离外电源,由用户板提供	2	I	GND_IS	信号隔离外电源地,由用户板提供
3	I	/RES	CPU 复位,低有效	4	I/O	NC	保留
5	0	TXD	CPU 串行数据发送	6	0	RTS-485	RS-485 控制端*
7	I/O	NC	保留	8	I	RXD	CPU 串行数据接收
9	0	NC	保留	10	I/O	Status	通信状态指示灯
11	I/O	BUS+	总线电源正极	12	I/O	BUS-	总线电源负极
13	I/O	NC	保留	14	I/O	NC	保留
15	I/O	NC	保留	16	I/O	NC	保留

*: 连接 RS-485 通信芯片时使用。

2.1.2 特殊功能拨码开关 S1

特殊功能拨码开关 S1 包含硬件复位,写保护,使能硬件拨码地址等功能。

图 2.2 特殊功能拨码开关 S1

表 2.2 特殊功能拨码开关 S1 功能描述

序号	名称	说明
1	RST	复位使能,恢复模块数据为出厂状态。首先模块断电,将此位拨 ON,模块上电,模块
		恢复到出厂状态,再将此位拨为 OFF。
2	WP	写保护使能。
3	S/E	硬件拨码地址使能。

2.1.3 特殊功能拨码开关 S2

特殊功能拨码开关 S2 包含设置 Profibus 地址、工作模式选择等功能。

图 2.3 特殊功能拨码开关 S2

表 2.3 特殊功能拨码开关 S2 功能描述

序号	名称	说明
1	1	如果为 ON,地址+1,否则,地址+0。该功能需要 S/E 为 ON 才有效。
2	2	如果为 ON,地址+2,否则,地址+0。该功能需要 S/E 为 ON 才有效。
3	4	如果为 ON,地址+4,否则,地址+0。该功能需要 S/E 为 ON 才有效。
4	8	如果为 ON,地址+8,否则,地址+0。该功能需要 S/E 为 ON 才有效。
5	16	如果为 ON,地址+16,否则,地址+0。该功能需要 S/E 为 ON 才有效。
6	32	如果为 ON,地址+32, 否则,地址+0。该功能需要 S/E 为 ON 才有效。
7	64	如果为 ON,地址+64, 否则,地址+0。该功能需要 S/E 为 ON 才有效。
8	М	嵌入式模块工作模式设定, ON 为配置模式, OFF 为正常工作模式。

2.2 模块安装

M0307 有三个Ф3 的定位孔,可使用 3 个高 11mm 的六棱柱固定安装到用户板卡上。

M0307 Modbus 转 PA 嵌入式模块是只支持一对一的 Modbus 和 Profibus PA 通信协议转换模块。作为 PA 设备,可以与 Modbus 设备进行通信。通过配置,可以实现 Modbus 设备数据与 PA 设备数据的交互。

M0307 Modbus 转 PA 嵌入式模块包含 1 个物理块、1 个变换块、16 个功能块,且仅支持 1 个 Modbus 从站。

其中,变换块主要包括 4 路模拟量输入、4 路模拟量输出、4 路离散量输入及 4 路离散量输出,共 16 个循环参数,还包含 10 个浮点数、10 个 32 位整型、10 个 16 位整型、10 个 8 位整型及 2 个 32 字节字符串, 共 42 个非循环参数。

变换块的主要功能就是与 Modbus 设备进行交互。

3.1 工作模式

M0307 可通过特殊功能拨码开关 S2 来切换两种工作模式:配置模式与正常工作模式。ON 为配置模式, OFF 为正常工作模式。

MICROCYBEF 3.1.1 配置模式

口科博微

当 M0307 工作在配置模式下, M0307 作为 Modbus 从站, 而 Modbus 通用配置工具作为 Modbus 主站。 通过 Modbus 通用配置工具,除了可以配置厂商 ID、设备 ID、设备地址来源等基本信息外,主要功能是配 置上文提到的 16 个循环参数以及 42 个非循环参数的信息,例如参数使用哪个 Modbus 功能码来读写,寄存 器地址是多少等等。配置好后,这些信息将下载到 M0307 中保存。

3.1.2 正常工作模式

当 M0307 工作在正常工作模式下, M0307 作为 Modbus 主站,用户设备作为 Modbus 从站。M0307 模 块通过配置好的工作机制发送 Modbus 命令来与用户设备进行交互。

Modbus 设备采集的数据通过读写 Modbus 寄存器映射到 M0307 的变换块的参数上,再通过变换块到 AI、AO、DI 及 DO 功能块的通道访问功能,为 Profibus 系统提供数据支持。

正常工作模式的工作机制分为如下三个阶段:初始化阶段、非循环阶段、循环阶段。

3.1.2.1初始化阶段

初始化阶段主要功能是测试 Modbus 通信是否正常。此阶段将根据实际配置来选择发送一条 Modbus 命令,如果得到正确响应,那么将进入下一阶段。

选择命令的优先级为读取串口地址、读取模拟量输入、读取离散量输入。

即如果配置了串口设地址功能,那么此阶段将发送读取串口地址命令,不发送读取模拟量输入或离散 量输入命令;如果没有配置串口设地址功能,则根据模拟量输入或离散量输入的数量来选择发送命令,模 拟量输入的优先级高于离散量输入,即模拟量输入数量大于 0 时,发送读取模拟量输入,而不发送离散量 输入。模块还规定模拟量输入数量与离散量输入数量至少有一个非 0。如果选择连续功能,则发送连续读命 令,否则发送读首个模拟量输入或离散量输入命令。

详细规则,见下表。

M0307 Modbus转PA嵌入式模块使用手册

表 3.1 初始化阶段命令选择规则									
串口设地址	模拟量输入 数量	模拟量输入 寄存器地址连续	离散量输入 数量	离散量输入 寄存器地址连续	发送命令				
\checkmark	*	*	*	*	读串口地址				
×	4≥AI>0	×	*	*	读模拟量输入1				
×	4≥AI>0	\checkmark	*	*	读所有模拟量输入				
×	0	*	4≥DI>0	×	读离散量输入1				
×	0	*	4≥DI>0	\checkmark	读所有离散量输入				
* 没有影响,可	* 没有影响,可为任意状态。								

3.1.2.2非循环阶段

非循环阶段主要将所有数据均读取一遍。读取的先后顺序为模拟量输入、离散量输入、浮点数据、USIGN32 数据、USIGN16 数据、USIGN8 数据、Octet String 数据。

其中,模拟量输入及离散量输入可根据配置发送一次性读取命令。而其他数据即使配置连续功能,也 将分别读取每个数据,此时的连续功能仅是方便用户配置而已。

即连续功能分为两种,循环参数的连续功能支持发送一次性读写命令,而非循环参数的连续功能仅为 了方便用户配置。

当所有数据均读取正确后,将进入循环阶段。否则,将重新执行非循环阶段,直至所有数据读取成功。

3.1.2.3循环阶段

循环阶段主要功能有两个,即循环读取循环输入输出参数及写非循环参数。

当模块进入此状态后,将按照顺序循环发送读模拟量输入、写模拟量输出、读离散量输入、写离散量 输出命令。当非循环参数发生变化时,将会发送写非循环参数命令。

当发生连续发生错误超过10次,则跳转回非循环阶段,重新读取所有数据。

如果配置串口设地址,那么此阶段也将在写离散量输出命令后实时发送读取串口地址命令。

4.1 拓扑结构

PA 设备支持多种网络拓扑接线方式,如图 4.1 所示。图 4.2 给出了 PA 设备的总线连接,总线两端需接入终端匹配电阻保证信号质量。总线的长度最大为 1900 米,使用中继器可以延长到 10 公里。

图 4.2 PA 总线连接

中科博微 4.2 功能块说明

M0307 Modbus 转 PA 嵌入式模块,包含 1 个物理块、4 个 AI 功能块、4 个 AO 功能块、4 个 DI 功能块、 4 个 DO 功能块以及 1 个 User 变换块。其中,每个 AI、AO、DI、DO 功能块都有 4 个通道,分别指向 User 变换块的 4 个模拟量输入、4 个模拟量输出、4 个离散量输入以及 4 个离散量输出。

表 4.1 功能块描述

功能块名称	功能块描述
Physical Block	物理块(PB)。描述了设备特有的硬件信息和识别、诊断信息,包括设备位号,软件版本、硬件版本、安装日期等
User Transducer Block	通过 User 变换块可以读写 Modbus 参数,如4路模拟量输入、4路模拟量输出、4路离散量输入及4路离散量输出等。
Analog Input Block	模拟量输入功能块(AI)。通过内部通道从变换块获取来自于 Modbus 从设备的模拟过程值,对其进行处理,并将适当的测量值通过总线通信提供给主站设备使用
Analog Output Block	模拟输出功能块(AO),用于将主站设备输出的数据通过内部通道传递给变换块,作用于 Modbus 从设备
Discrete Input Block	离散量输入功能块(DI),通过内部通道从变换块获取来自于 Modbus 从设备的输入数据,并将 其通过总线通信提供给主站设备使用
Discrete Output Block	离散量输出功能块(DO),将主站设备设置的离散输出数据通过内部通道传递给变换块,作用于 Modbus 从设备

4.3 User 变换块参数

在配置模块之前,先来了解一下 User 变换块。下表描述了所有 User 变换块的参数。

	表 4.2 Modbus 变换块参数属性表								
索	参数名称	数据类型	有效范	默认	存储	功能描述			
					模式				
1	ST_REV	Unsigned16		0	S/RO	静态版本			
2	TAG_DESC	OctString(32)		Spaces	S	位号			
3	STRATEGY	Unsigned16		0	S	策略			
4	ALERT_KEY	Unsigned8	1 to	0	S	报警			
			255						
5	TARGET_MODE	Unsigned8		AUTO	S	目标模式			
6	MODE_BLK	DS-37			D	当前模式			
7	ALARM_SUM	DS-42			D	报警汇总			
12	BAD_STATUS	Bitstring(4)			D/RO	16 输入输出命令的通信状态,某一位被置为1表			
						示相应的命令没有得到响应,具体见下表关于该			
						参数的描述			
13	ERR_LOOK_RESULT	Unsigned8(32)	0-255	0xFC	D/RO	16 输入输出命令负响应异常代码			
14	MOD_IN1	101			D/RO	模拟量输入1			
15	MOD_IN2	101			D/RO	模拟量输入 2			
16	MOD_IN3	101			D/RO	模拟量输入3			
17	MOD_IN4	101			D/RO	模拟量输入 4			
22	MOD_OUT1	101			D/RO	模拟量输出1			
23	MOD_OUT2	101			D/RO	模拟量输出 2			
24	MOD_OUT3	101			D/RO	模拟量输出 3			
25	MOD_OUT4	101			D/RO	模拟量输出 4			
30	MOD_IN_D1	102			D/RO	离散量输入1			
31	MOD_IN_D2	102			D/RO	离散量输入 2			

		计博微 OCYBER		М	0307	Modbus转PA嵌入式模块使用手册
32	MOD_IN_D3	102			D/RO	离散量输入3
33	MOD_IN_D4	102			D/RO	离散量输入 4
38	MOD_OUT_D1	102			D/RO	离散量输出1
39	MOD_OUT_D2	102			D/RO	离散量输出 2
40	MOD_OUT_D3	102			D/RO	离散量输出 3
41	MOD_OUT_D4	102			D/RO	离散量输出 4
46	GENERIC_FLOAT_1	Float		0	S	通用浮点数变量1
47	GENERIC_FLOAT_2	Float		0	S	通用浮点数变量 2
48	GENERIC_FLOAT_3	Float		0	S	通用浮点数变量 3
49	GENERIC_FLOAT_4	Float		0	S	通用浮点数变量 4
50	GENERIC_FLOAT_5	Float		0	S	通用浮点数变量 5
51	GENERIC_FLOAT_6	Float		0	S	通用浮点数变量 6
52	GENERIC_FLOAT_7	Float		0	S	通用浮点数变量 7
53	GENERIC_FLOAT_8	Float		0	S	通用浮点数变量 8
54	GENERIC_FLOAT_9	Float		0	S	通用浮点数变量 9
55	GENERIC_FLOAT_10	Float		0	S	通用浮点数变量 10
56	GENERIC_USIGN32_1	Unsigned32		0	S	通用 32 位无符号整型变量 1
57	GENERIC USIGN32 2	Unsigned32		0	S	通用 32 位无符号整型变量 2
58	GENERIC USIGN32 3	Unsigned32		0	S	通用 32 位无符号整型变量 3
59	GENERIC USIGN32 4	Unsigned32		0	S	通用 32 位无符号整型变量 4
60	GENERIC USIGN32 5	Unsigned32		0	S	通用 32 位无符号整型变量 5
61	GENERIC USIGN32 6	Unsigned32		0	S	通用 32 位无符号整型变量 6
62	GENERIC USIGN32 7	Unsigned32		0	S	通用 32 位无符号整型变量 7
63	GENERIC USIGN32 8	Unsigned32		0	S	通用 32 位无符号整型变量 8
64	GENERIC USIGN32 9	Unsigned32		0	S	通用 32 位无符号整型变量 9
65	GENERIC USIGN32 10	Unsigned32		0	S	通用 32 位无符号整型变量 10
66	GENERIC USIGN16 1	Unsigned16		0	S	通用 16 位无符号整型变量 1
67	GENERIC USIGN16 2	Unsigned16		0	S	通用 16 位无符号整型变量 2
68	GENERIC_USIGN16_3	Unsigned16		0	S	通用 16 位无符号整型变量 3
69	GENERIC_USIGN16_4	Unsigned16		0	S	通用 16 位无符号整型变量 4
70	GENERIC_USIGN16_5	Unsigned16		0	S	通用 16 位无符号整型变量 5
71	GENERIC_USIGN16_6	Unsigned16		0	S	通用 16 位无符号整型变量 6
72	GENERIC_USIGN16_7	Unsigned16		0	S	通用 16 位无符号整型变量 7
73	GENERIC_USIGN16_8	Unsigned16		0	S	通用 16 位无符号整型变量 8
74	GENERIC_USIGN16_9	Unsigned16		0	S	通用 16 位无符号整型变量 9
75	GENERIC_USIGN16_10	Unsigned16		0	S	通用 16 位无符号整型变量 10
76	GENERIC_USIGN8_1	Unsigned8		0	S	通用8位无符号整型变量1
77	GENERIC_USIGN8_2	Unsigned8		0	S	通用8位无符号整型变量2
78	GENERIC_USIGN8_3	Unsigned8		0	S	通用8位无符号整型变量3
79	GENERIC_USIGN8_4	Unsigned8		0	S	通用8位无符号整型变量4
80	GENERIC_USIGN8_5	Unsigned8		0	S	通用8位无符号整型变量5
81	GENERIC_USIGN8_6	Unsigned8		0	S	通用8位无符号整型变量6
82	GENERIC_USIGN8_7	Unsigned8		0	S	通用8位无符号整型变量7
83	GENERIC_USIGN8_8	Unsigned8		0	S	通用8位无符号整型变量8
84	GENERIC_USIGN8 9	Unsigned8		0	S	通用8位无符号整型变量9
85	GENERIC_USIGN8_10	Unsigned8		0	S	通用 8 位无符号整型变量 10
86	GENERIC_OCTET_1	OctString(32)			S	通用 32 字节字符串变量 1
87	GENERIC_OCTET_2	OctString(32)			S	通用 32 字节字符串变量 2
88	FLOAT_ERR INFO	Unsigned8(10)	0-255	0xFC	S	通用浮点数负响应异常代码
89	USIGN32 ERR INFO	Unsigned8(10)	0-255	0xFC	S	通用 32 位无符号整型负响应异常代码

9	USIGN16_ERR_INFO	Unsigned8(10)	0-255	0xFC	S	通用 16 位无符号整型负响应异常代码	
9	1 USIGN8_ERR_INFO	Unsigned8(10)	0-255	0xFC	S	通用8位无符号整型负响应异常代码	
9	2 OCTET_ERR_INFO	Unsigned8(10)	0-255	0xFC	S	通用 32 字节字符串负响应异常代码	
	其由志司 4 7 先行旗条粉,左大毛肌由无册过夕进设,其众条数收左下立由送细进设						

其中索引 1-7 为标准参数,在本手册中不做过多描述。其余参数将在下文中详细描述。

4.3.1 BAD_STATUS 参数描述

BAD_STATUS 参数用于描述循环输入输出参数通信状态。如果通信失败,相应的位被置为1,否则为0。 此参数可在 DD 中的 Device->User Configuration->User Error Lookup 菜单中查看。

农 I.5 DID_5III 05 岁 实油建议								
位	参数	位	参数					
0	MOD_IN1	16	MOD_IN_D1					
1	MOD_IN2	17	MOD_IN_D2					
2	MOD_IN3	18	MOD_IN_D3					
3	MOD_IN4	19	MOD_IN_D4					
4		20						
5	——	21						
6		22						
7	——	23						
8	MOD_OUT1	24	MOD_OUT_D1					
9	MOD_OUT2	25	MOD_OUT_D2					
10	MOD_OUT3	26	MOD_OUT_D3					
11	MOD_OUT4	27	MOD_OUT_D4					
12	——	28	——					
13		29						
14		30						
15		31						

表 4.3 BAD_STATUS 参数描述表

4.3.2 负响应检测参数描述

负响应检测参数提供负响应数据查询功能,用户可以查询每个数据的响应值。负响应检测参数包括 ERR_LOOK_RESULT 参数、FLOAT_ERR_INFO 参数、USIGN32_ERR_INFO 参数、USIGN16_ERR_INFO 参数、USIGN8_ERR_INFO 参数、OCTET _ERR_INFO 参数。分别在 DD 中的 Device->User Configuration 菜单中的 User Error Lookup、User Generic Float、User Generic Usign32、User Generic Usign16、User Generic Usign8、User Generic Octet 菜单查 看。

数值	
0x00	ОК
0x01	Illegal Function
0x02	Illegal Data Address
0x03	Illegal Data Value
0x04	Slave Device Failure
0x05~0xFF	Unknown Exception Code
0xFC	No Communication
0xFD	Data Type Mismatch
OXFE	Function Code Mismatch
OxFF	Communication Failure

表 4.4 ERR_LOOK_RESULT 参数描述表

4.3.3 User 变换块循环输入输出参数

User 变换块提供 4 个模拟量输入、4 个模拟量输出、4 个离散量输入以及 4 个离散量输出参数。在不修 改功能块通道的情况下,各个输入输出参数作用如下表:

	农 4.5 调约 制八十四 学 双田定 农							
索引	参数名称	数据类型	描述					
14	MOD_IN1	101	模拟量输入,将从 Modbus 从站采集来的值和状态传输给 AI 功能块 1					
15	MOD_IN2	101	模拟量输入,将从 Modbus 从站采集来的值和状态传输给 AI 功能块 2					
16	MOD_IN3	101	模拟量输入,将从 Modbus 从站采集来的值和状态传输给 AI 功能块 3					
17	MOD_IN4	101	模拟量输入,将从 Modbus 从站采集来的值和状态传输给 AI 功能块 4					
22	MOD_OUT1	101	模拟量输出,将从 AO 功能块 1 来的设定值和状态传输给 Modbus 从站					
23	MOD_OUT2	101	模拟量输出,将从 AO 功能块 2 来的设定值和状态传输给 Modbus 从站					
24	MOD_OUT3	101	模拟量输出,将从 AO 功能块 3 来的设定值和状态传输给 Modbus 从站					
25	MOD_OUT4	101	模拟量输出,将从 AO 功能块 4 来的设定值和状态传输给 Modbus 从站					
30	MOD_IN_D1	102	离散量输入,将从 Modbus 从站采集来的值和状态传输给 DI 功能块 1					
31	MOD_IN_D2	102	离散量输入,将从 Modbus 从站采集来的值和状态传输给 DI 功能块 2					
32	MOD_IN_D3	102	离散量输入,将从 Modbus 从站采集来的值和状态传输给 DI 功能块 3					
33	MOD_IN_D4	102	离散量输入,将从 Modbus 从站采集来的值和状态传输给 DI 功能块 4					
38	MOD_OUT_D1	102	离散量输出,将从 DO 功能块1来的设定值和状态传输给 Modbus 从站					
39	MOD_OUT_D2	102	离散量输出,将从 DO 功能块 2 来的设定值和状态传输给 Modbus 从站					
40	MOD_OUT_D3	102	离散量输出,将从 DO 功能块 3 来的设定值和状态传输给 Modbus 从站					
41	MOD_OUT_D4	102	离散量输出,将从 DO 功能块 4 来的设定值和状态传输给 Modbus 从站					

表 4.5 循环输入输出参数描述表

表 4.6 101 & 102 数据类型表

数据类型	数据成员	成员数据类型	描述
404	VALUE	Float	浮点值。
101	STATUS	Unsigned8	包含质量和状态两部分。
400	VALUE	Unsigned8	离散值。
102	STATUS	Unsigned8	包含质量和状态两部分。

这些参数可在 DD 中的 Device->User Configuration 菜单中查看。

4.3.4 User 变换块非循环参数

User 变换块除了提供循环输入输出参数外,还提供了 5 种非循环参数,如下表所示。这些参数可用于存储一些辅助参数,可根据自己的需求灵活使用,例如某一个循环参数的上下限,单位代码等等。每次上电时读取一次,之后可随时进行写操作。这些参数可在 DD 中的 Device->User Configuration 菜单中读写。

索引	参数名称	数据类型	描述
46~55	GENERIC_FLOAT	Float	10 个通用浮点数变量,可将任意 Modbus 浮点数据传到 Profibus PA 端
56~65	GENERIC_USIGN32	Unsigned32	10 个通用 32 位无符号整型变量,可将任意 Modbus 浮点数据传到 Profibus PA 端
66~75	GENERIC_USIGN16	Unsigned16	10 个通用 16 位无符号整型变量,可将任意 Modbus 浮点数据传到 Profibus PA 端
76~85	GENERIC_USIGN8	Unsigned8	10 个通用 8 位无符号整型变量,可将任意 Modbus 浮点数据传到 Profibus PA 端
86~87	GENERIC_OCTET	OctString(32)	2 个通用字符串变量,可将任意 Modbus 字符串数据传到 Profibus PA 端

表 4.7 非循环参数描述表

4.4 模块配置

由上文了解到 M0307 模块中的 User 变换块包含许多参数,这些参数均需要从用户板卡上读取或写入到 用户板卡上。但具体读写用户板上的哪些数据呢?这些数据都存储在用户板上的哪个寄存器里呢?所以, 这就需要多模块进行初始化配置工作。

首先,将模块 S2.8 拨为 ON,模块进入到配置模式。通过底板将模块连接到电脑串口上。

打开 Modbus 通用配置工具,通过添加串口的方式,来添加设备。

扫描到设备后,设备的基本参数会将读取到配置工具中。之后,用户即可根据自己需求来任意修改模块的初始化配置参数了。Modbus 通用配置工具参见工具自带的手册。

4.4.1 整机设备初始化参数配置

MICROC

整机设备初始化信息包括厂商 ID、设备 ID 等与设备息息相关的参数信息,这些参数均是用户产品的专有信息。

参数名称		描述				
厂商ID		要开发PA设备,首先要成为PI组织会员,然后才允许申请厂商ID,非会员不允许申请。厂商ID主				
要应用于设备描述EDD中。						
设备ID 设备唯一标识,需要向PI组织申请。会员、非会员,申请价格不一样。						
行规ID		行规指定的标识。				
设备类型		用于描述设备类型的字符串,长度16字节。				
设备序列	号	用于整机设备的产品序列号,长度16字节。				
设备认证						
设备安装时间 用于填写设备出厂时间,长度16字节。						
串口设地址		仅当硬件设地址禁止时有效。				
		0: 禁止				
		1: 使能				
总线地址	配置信息	以下为总线地址配置信息,仅当硬件设地址禁止且串口设地址使能时有效。				
总线地	读写属性	只读				
址属性 功能码 03,04						
	数据类型	Unsigned8_0, Unsigned8_1				
	寄存器地址	存储着总线地址参数的寄存器地址。				

表 4.8 整机设备初始化参数表

4.4.2 Modbus 通信参数配置

Modbus 通信参数是模块与用户板之间最基本的配置参数。只有将这些参数配置正确后,才能使模块与用户板之间正确通信。

参数名称	描述					
波特率	0: 2400	1: 4800	2: 9600	3: 14400	4: 19200	
数据位	0: 8	1: 7				
校验方式	0: None	1: Even	2: Odd			
接口类型	0: TTL	1: RS232	2: RS485			
停止位	0: One Stop B	lit	1: Two Stop	Bits		
从站地址	该地址为正常日	工作模式下 Mode	ous 从站地址,	从站地址范围:	1~255。	
CRC 校验顺序	CRC 校验顺序					
	0: Normal	1: Swapped				
超时时间	超时时间范围:	300ms~1000m	าร。			
重试次数	重试次数: 1~1	0.				

表 4.9 Modbus 通信参数表

4.4.3 循环输入输出参数配置

上文已经介绍,本模块包含模拟量输入、模拟量输出、离散量输入以及离散量输出参数,参数个数均 固定为4个,所以本章节将介绍这些参数是如何与 Modbus 从站相关联的。以上的4种参数均有读写、数据 类型、寄存器地址、功能码等属性,均可通过 Modbus 通用配置工具进行配置。

● 读写属性

此属性描述参数在 Modbus 端是只读的,只写的,还是可读可写的。

● 数据格式属性

此属性描述参数在 Modbus 端的数据类型格式,对其方式等。

索引	名称	数据类型	数据长度	有效范围
1	Float_0123	单精度浮点	4	
2	Float_1032	单精度浮点	4	
3	Float_3210	单精度浮点	4	
4	Float_2301	单精度浮点	4	
5	Unsigned8_0	无符号整型	1	0 - 255
6	Unsigned8_1	无符号整型	1	0 - 255
7	Unsigned16_01	无符号短整型	2	0 - 65535
8	Unsigned16_10	无符号短整型	2	0 - 65535
9	Unsigned32_0123	无符号长整型	4	0 - 4294967295
10	Unsigned32_1032	无符号长整型	4	0 - 4294967295
11	Unsigned32_3210	无符号长整型	4	0 - 4294967295
12	Unsigned32_2301	无符号长整型	4	0 - 4294967295
13	Signed8_0	有符号整型	1	-128 - 127
14	Signed8_1	有符号整型	1	-128 - 127
15	Signed16_01	有符号短整型	2	-32768 - 32767
16	Signed16_10	有符号短整型	2	-32768 - 32767
17	Signed32_0123	有符号长整型	4	-2,147,483,648 -
				2,147,483,647
18	Signed32_1032	有符号长整型	4	-2,147,483,648 -
				2,147,483,647
19	Signed32_3210	有符号长整型	4	-2,147,483,648 -
20	Signad 22, 2201	古效早ど敷刑	4	2,147,483,647
20	Signeusz_2301	 1 何 5 下 釜 空	4	-2,147,483,048 - 2 147 483 647
				2,17,703,077

表 4.10 数据格式属性描述表

上述数据格式表格中,数据类型名称 DataType_abcd 的后缀 abcd 代表该数据在 Modbus 从站寄存器中的顺序号,0 代表第一个寄存器中的低 8 位数据,1 代表第一个寄存器中的高 8 位数据,2 代表第二个寄存器中的低 8 位数据,3 代表第二个寄存器中的高 8 位数据。模块内存采用小端模式,所以 Unsigned32_0123 表示将 Modbus 从站寄存器的数据按照原来的顺序依次赋值给模块中的长整型变量,而 Unsigned32_1032 则将 Modbus 从站每个寄存器的数据交换高低字节后赋值给网关中的长整型变量。

● 寄存器地址属性

此属性描述参数在 Modbus 存储区所在的地址。

功能码属性

MICROC

此属性描述使用哪种功能码去对参数进行操作。

表 4.11 功能码参数描述表						
功能码	名称					
1	FC01 Read Coils					
2	FC02 Read Discrete Input					
3	FC03 Read Holding Register					
4	FC04 Read Input Register					
5	FC05 Write Single Coils					
6	FC06 Write Single Register					
16	FC16 Write Multiple Register					

表 4.12 循环输入输出参数配置表

数据类型	读写 属性	可用 功能码	可用数据格式	寄存器地 址是否可 以连续
模拟量输入	只读	03,04	Float_0123, Float_1032, Float_3210, Float_2301, Unsigned32_0123, Unsigned32_1032, Unsigned32_3210, Unsigned32_2301, Unsigned16_01, Unsigned16_10, Signed16_01, Signed16_10, Signed32_0123, Signed32_1032, Signed32_3210, Signed32_2301, Unsigned8_0, Unsigned8_1, Signed8_0, Signed8_1	是
模拟量输出	只写	06	Unsigned16_01, Unsigned16_10, Signed16_01, Signed16_10, Unsigned8_0, Unsigned8_1, Signed8_0, Signed8_1	否
		16	Float_0123, Float_1032, Float_3210, Float_2301, Unsigned32_0123, Unsigned32_1032, Unsigned32_3210, Unsigned32_2301, Signed32_0123, Signed32_1032, Signed32_3210, Signed32_2301, Unsigned16_01, Unsigned16_10, Signed16_01, Signed16_10, Unsigned8_0, Unsigned8_1, Signed8_0, Signed8_1	是
离散量输入	只读	01,02	None	是
	口官	03,04	None	定 否
	<i>,</i> ,_,	15	None	是
		06	Unsigned8_0, Unsigned8_1	否
		16	Unsigned8_0, Unsigned8_1	是

4.4.4 非循环参数配置

上文已经介绍,本模块包含 5 种非循环参数。其中,浮点数据、USIGN32 数据、USIGN16 数据及 USIGN8 数据各 10 个,还有 2 个 32 字节的 Octet String 数据。这些参数的配置方法与循环参数的配置方法完全一致。 也包含有读写、数据类型、寄存器地址、功能码等属性,均可通过 Modbus 通用配置工具进行配置。

数据类型	读写 属性	可用 功能码	可用数据格式	奇仔器地 址是否可 以连续
浮点数据	读写	03,04,16	Float_0123, Float_1032, Float_3210, Float_2301	是
USIGN32数据	读写	03,04,16	Unsigned32_0123, Unsigned32_1032, Unsigned32_3210, Unsigned32_2301	是
USIGN16数据	读写	03,04,06,16	Unsigned16_01, Unsigned16_10	是
USIGN8数据	读写	03,04,06,16	Unsigned8_0, Signed8_1	是
Octet String数据	读写	03,04,16	Unsigned16_01, Unsigned16_10	是

表 4.13 非循环参数配置表

4.4.5 生成 GSD 文件

通过 Modbus 通用配置工具,可配置 GSD 文件中的一些基本信息,可生成用户专有的设备 GSD 文件。 如用户对生成的 GSD 文件不满意,可自行参考 GSD 规范或使用专用工具修改生成的 GSD 文件。

自行修改 GSD 文件时,要注意以下几点:

- 1) ";"之后的内容代表是注释文本,不是实际的 GSD 文件描述,用户可根据需要自行添加注释文本;
- Bitmap_Device 图片有格式要求,文件使用 Windows Bitmap 格式(.bmp),长 70*宽 40 像素,16
 位。为了兼容性考虑,也可以使用 Device Indipendent Bitmap 格式的文件(.dib);
- 3) Slave_Family 是用于指定本产品的从站类型的。PA 设备此参数固定为 12。可在 12 后面添加@的方 式来增加设备目录。例如: 12@Microcyber@Module。

4.5 设备使用

模块配置完成后,切换回正常工作模式,即可将模块嵌入到用户产品中,组成 Profibus PA 从站设备了。

4.5.1 设置从站地址

整机设备使用时,需要注意设备地址的设置方式。使用本模块,有 2 大类设置地址的方式:硬件设地 址和软件设地址。其中,软件设地址还包括通过总线设地址和通过串口设地址。

● 硬件设地址

将模块拨码开关 S1.3 拨为 ON,即使能硬件设地址功能。此时,整机设备仅能通过拨码开关 S2.1~S2.7 来设置从站地址。

● 软件设地址

1) 通过总线设地址

将模块拨码开关 S1.3 拨为 OFF,禁用硬件设地址功能。配置模块时,将"串口设地址"参数设置为禁止。 此时,即可通过总线命令来设置从站地址了。

2) 通过串口设地址

将模块拨码开关 S1.3 拨为 OFF,禁用硬件设地址功能。配置模块时,将"串口设地址"参数设置为使能。 此时,从站设备的地址来源于"总线地址寄存器"参数所在的 Modbus 寄存器中。用户通过修改此寄存器, 即可修改从站地址。

4.5.2 设备循环组态

4.5.2.1GSD 文件说明

PA 设备一般均支持至少两个 GSD 文件: 厂商 GSD 文件以及行规 GSD 文件。上文生成的 GSD 文件为厂 商 GSD 文件。M0307 生成厂商 GSD 文件包含的 16 个功能块均可以跟 1 类主站进行循环数据交换服务。用 户需要对这些功能块的模块进行组态。

表 4.14 GSD Module							
功能块	模块名称	模块编号	组态数据				
空模块	EMPTY_MODULE	1	0x00				
AI 功能块	Analog Input (AI)	2	0x42,0x84,0x08,0x05				
	SP	3	0x82,0x84,0x08,0x05				
	SP+READBACK+POS_D	4	0xC6, 0x84, 0x86, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05				
	SP+CHECKBACK	5	0xC3, 0x84, 0x82, 0x08, 0x05, 0x0A				
▲○ 功能性	SP+READBACK+POS_D+CHECKBACK	6	0xC7, 0x84, 0x89, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05, 0x0A				
和功能改	RC_IN+RC_OUT	7	0xC4, 0x84, 0x84, 0x08, 0x05, 0x08, 0x05				
	RC_IN+RC_OUT+CHECKBACK	8	0xC5, 0x84, 0x87, 0x08, 0x05, 0x08, 0x05, 0x0A				
	SP+RC_IN+RB+RC_OUT+POS_D+CB	9	0xCB, 0x89, 0x8E, 0x08, 0x05, 0x08, 0x05, 0x08, 0x05, 0x08,				
			0x05, 0x05, 0x05, 0x0A				
DI 功能块	OUT_D	10	0x91				
	SP_D	11	0xA1				
	SP_D+RB_D	12	0xC1, 0x81, 0x81, 0x83				
	SP_D+CB_D	13	0xC1, 0x81, 0x82, 0x92				
DO 功能块	SP_D+RB_D+CB_D	14	0xC1, 0x81, 0x84, 0x93				
	RC_IN_D+RC_OUT_D	15	0xC1, 0x81, 0x81, 0x8C				
	RC_IN_D+RC_OUT_D+CB_D	16	0xC1, 0x81, 0x84, 0x9C				
	SP_D+RC_IN_D+RB_D+RC_OUT_D+CB_D	17	0xC1, 0x83, 0x86, 0x9F				

注: RB = READBACK, CB = CHECKBACK, RC_OUT = RCAS_OUT, RC_IN = RCAS_IN

每个功能块占用一个槽, 每个槽可以有多种模块选择。

表 4.15 GSD 输入输出数据组态表

槽号(Slot)	功能块	默认模块	可选模块
1	AI 功能块 1	2	1,2
2	AI 功能块 2	2	1,2
3	AI 功能块 3	2	1,2
4	AI 功能块 4	2	1,2
5	AO 功能块 1	3	1,3,4,5,6,7,8,9
6	AO 功能块 2	3	1,3,4,5,6,7,8,9
7	AO 功能块 3	3	1,3,4,5,6,7,8,9
8	AO 功能块 4	3	1,3,4,5,6,7,8,9
9	DI 功能块 1	10	1,10
10	DI 功能块 2	10	1,10
11	DI 功能块 3	10	1,10
12	DI 功能块 4	10	1,10
13	DO 功能块 1	11	1,11,12,13,14,15,16,17
14	DO 功能块 2	11	1,11,12,13,14,15,16,17
15	DO 功能块 3	11	1,11,12,13,14,15,16,17
16	DO 功能块 4	11	1,11,12,13,14,15,16,17

4.5.2.2安装 GSD 文件

山科博微

MICROCYBER

以西门子 STEP 7 软件为例,选择任意工程,打开硬件组态界面,选择"Options→Install GSD File..."选项,将打开导入 GSD 文件窗口。

. arr 051	, IIIES.		from the directory
Documen	ts and Settir	ugs\Adminis	strator\桌面\EDD\M0307\GSD
le	Release	Version	Languages
0000.	gsd		Default
07: PR0	FIBUS PA Prof	ile 3.02 w	with 16 function block: 4AI, 4AO, 4DI, 4DO
07: PRO	FIBUS PA Prof	ïile 3.02 w	with 16 function block: 4AI, 4AO, 4DI, 4DO
07: PRO Instal	FIBUS PA Prof	ile 3.02 w	with 16 function block: 4AI, 4AO, 4DI, 4DO

图 4.3 导入 GSD 文件窗口

点击 "Browse...",选择 GSD 文件所在路径,将会罗列出当前路径下的所有 GSD 文件。选择需要导入的 GSD 文件,然后点击 "Install"。一直点击 "Yes",直到出现图 4.4 为止。

图 4.4 导入成功

4.5.2.4使用 GSD 文件

安装好 GSD 文件后,网关将会出现在硬件组态界面的右侧树形列表中。

图 4.5 正确安装的设备

拖拽网关到 DP 总线上。将会自动弹出属性窗口。配置网关地址为您所需的地址。在这里我使用地址 85。

-1	<u>N</u> ew
	Properties
F	Delete

图 4.6 配置设备属性

点击"OK",完成网关的添加。

选	中组态图中	中的网关, 在视图	左下方料	将会出现	见该设备的组态配置	,如下图	图所示:		
HT Con	fig - [SIMATIC 4	400(1) (Configuration)	0307_412-	2]					_ 🗆 X
D Statio	n <u>E</u> dit <u>I</u> nsert <u>P</u>	LC View Options Window He	lp						_ 8 ×
0 🚅 🕯	~ 5 5. 5	e e 🔬 🎪 🖪 🕾	N?						
	1 11								
(0) U	R2		PROPERTY (1)				Find:		mt mil
1 4 17 5 8	PS 405 20A		PROFILEUS (1):	Dr master s	yysten (1)	لـ بر بر		Standard MO307 Universal module Not in cyclic data transf Analog Input (AI) SF SF+READBACK+FOS_D SF+CHECKBACK SF+READBACK+FOS_D+CHECKBAN RC_IN+RC_OUT RC_IN+RC_OUT+CHECKBACK SF+RC_IN+RE+RC_OUT+FOS_D+(OUT_D SF D SF D SF D SF D	er CK
	(85) M0307							SP_D+CB_D	
Slot	DP ID	Order Number / Designation	I Add	Q Address	Comment			RC IN D+RC OUT D	
1	66	Analog Input (AI)	512516					RC_IN_D+RC_OUT_D+CB_D	
2	66	Analog Input (AI)	517521					SP_D+RC_IN_D+RB_D+RC_OUT_1	D+CB_I
3	66	Analog Input (AI)	522526	-				Multi Variable (Phy MBP)	
4	66	Analog Input (AI)	527531				• • • •	Positioner TZIDC-110/210	
5	130	SP		512516				Transmitter 1 AI (Phy MBP)	
6	130	SP		517521				Transmitter 15 AI (Phy MBP)	
1	130	SP		522526			±	Transmitter 2 AI (Phy MBP)	
8	130	SP		527531		(i		Transmitter 3 AI (Phy MBP)	
9	145	OUT_D	532533					Transmitter 4 AI (Phy MBP)	
10	145		534535					Transmitter 5 AI (Phy MBP)	
	145	OVT_D	536537					Transmitter 7 AI (Phy MBP)	_
12	145		538539				↓ + - →	WNK7 Serial Pressure Transmit	tter 🔳
13	161	SP_D		532533					
14	161	SP_D		534535			PROFIBUS :	PA Profile 3.02 with 16 funct	ion t
15	161	SP_D		536537			block: 4A	I, 4AU, 4UI, 4UO	
16	161	pr_n		538539					
P	V.l.						D		Chg

图 4.7 设备组态配置

在进行硬件组态时,用户根据实际需求,做相应的组态调整,从而形成网关的输入输出数据的组态信息。每个模块选项的具体含义见 4.5.2.1。

4.5.2.5行规 GSD 文件

中科博微

除了厂商 GSD 文件外,用户还可以使用行规定义好的 GSD 文件: pa139760.gsd。

但注意,由于设备每个槽所放的模块已经规定好(参见表 4.15),所以仅当配置正确时,才能正常工作。

第5章 GSD 文件、ID 号以及产品认证测试

5.1 GSD 文件、ID 号以及产品认证测试的介绍

5.1.1 GSD 文件(Electronic Data Sheet)

每一个 PROFIBUS 从站或一类主站都有一个设备描述文件,称为 GSD 文件。此文件是用来描述该 PROFIBUS 设备的特性的。

GSD 文件包含了设备所有定义参数,包括:

- ✔ 支持的波特率;
- ✔ 支持的信息长度;
- ✓ 输入/输出数据数量;
- ✔ 诊断信息的含义;
- ✔ 可选的模块种类等等。

GSD 文件是文本文件,可以用记事本类软件编辑。

无论使用什么样的系统环境,都需要根据 GSD 文件来对设备配置。

国际 PROFIBUS 组织 PI 提供了 GSD 文件编辑软件:GSD-Editor。该软件可以依照 Profibus 技术标准格式, 对用户编辑的 GSD 文件进行格式检查。该软件的"帮助"内容丰富,是一种快速学习 GSD 文件技术的途径。 但必须成为 PI 组织会员才能下载获得。

图 5.1 GSD-Editor 打开一个空文件

5.1.2 ID 号(Ident Number)

MICROCYBER

每款 PROFIBUS 设备都应该有唯一的 ID 号。用户可以通过委托"中国 PROFIBUS 组织 CPA"向国际 PROFIBUS 组织 PI 办理申请产品 ID 号的手续。

每个入会的厂商还可以申请厂商 ID 号,非会员不得申请。

CPA 联系电话: 010-63405107 联系人: 王静

CPA 的联系方式请查询网站 <u>http://www.pi-china.org/</u>

5.1.3 产品认证测试

PROFIBUS 产品认证测试不是强制性的。但产品如果通过认证测试,那么可以给设计院等最终用户更强的信心,并便于产品参与到项目投标和开拓市场。

在中国 PROFIBUS 组织 CPA 就可以进行产品的测试,当通过测试后,可以委托 CPA 向国际 PROFIBUS 组 织 PI 申请认证证书。

CPA 联系电话: 010-63322089 联系人: 刘丹

CPA 的联系方式请查询网站 <u>http://www.pi-china.org/</u>

5.2 用户产品的 GSD 文件、ID 号

由于模块是以 OEM 方式销售,用户对应用本模块开发的 PROFIBUS 设备有自主知识产权和品牌。因此,用户产品不可使用模块自带的 ID 号和 GSD 文件名。

用户可以在本模块的 GSD 文件基础上,把公司名、产品型号、系列号等处替换成用户产品信息,就可 以形成用户自己产品的 GSD 文件。

GSD 文件一般是按照如下规则命名的,由 8 位字符串组成,高 4 位代表厂商,低 4 位代表 ID 号。例如: MCYB0001.gsd 文件中 MCYB 是 Microcyber 的缩写,而 0001 是本产品的 ID 号。高 4 位的厂商名称缩写一般 是在申请 ID 号填表格时,由用户自己定义。

模块配置的 ID 号必须和 GSD 文件中的 ID 号一致才能连通。

5.3 设备描述文件

Profibus PA 设备主流的设备描述文件有两种: EDD 文件和设备 DTM。

由于这两种文件修改起来都比较复杂,在本手册中未对设备描述文件的修改做任何描述。本模块提供了 EDD 文件模板,用户可根据自己的需求修改.device 文件,来实现最基本的 EDD 功能。

修改参数个数,可能导致 EDD 读取部分参数失败,这种情况需要将 EDD 文件中的参数与配置的参数修 改一致才能解决。

如有 EDD 文件或设备 DTM 需求,可跟本公司联系。

● 简单维护

LED 指示灯	颜色	正常状态	异常状态	异常原因	纠正方法
PA 通讯	绿色	闪烁	灭	无 PA 通讯	检查 PA 主机设备及 PA 接口设备
				供电故障	检查供电电源及连接
				内部故障	联系技术支持
Modbus 通讯	绿色	闪烁	灭	未接从设备	正确连接从设备
				从设备故障	检查从设备及连接
				内部故障	联系技术支持

- 正常工作模式在线切换到配置模式,需要等正常工作模式 Modbus 命令队列发送完毕,才能完成切换。
- 日常维护只限于清洁设备。
- 故障维修:发现故障,请返厂维修。

第7章 技术规格

7.1 基本参数

测量对象	Modbus RTU 从设备
总线电源	9~32VDC
静态电流	≤14mA
总线协议	二线制,PA协议
隔离电压	Modbus 和 PA 总线接口,500VAC
温度范围	-40°C∼85°C
湿度范围	5~95%RH
启动时间	≤5 秒
更新时间	0.2 秒

7.2 性能指标

电磁兼容	符合 GB/T 18268.1-2010《测量、控制和实验室用的电设备 电磁兼容性要求 第1部
	分:通用要求》中工业场所的抗扰度要求
	FF 端口测试方法采用 GB/T 18268.23-2010 《测量、控制和实验室用的电设备 电磁
	兼容性要求 第23部分:特殊要求 带集成或远程信号调理变送器的试验配置、工作条
	件和性能判据》

7.3 物理特性

量重	16 g
结构材料	涂层:聚脂环氧树脂。

中科博微
 MICROCYBER

 7.4 默认通讯参数

从站地址	1
波特率	9600
数据位	8
停止位	1
校验	EVEN
CRC 校验	低字节在前

7.5 支持 Modbus 功能码

1	读线圈状态
2	读离散输入状态
3	读保持寄存器值
4	读输入寄存器值
5	写线圈
6	写单个寄存器值
15	写多个线圈
16	写多个寄存器值

附录1 产品选型

MOD- PA	M0307 M	odbus 转 PA 嵌	嵌入式模块			
	代号	主从				
	М	主站				
		代号	模块形式			
		N	普通			
			代号	硬件接口		
			Т	TTL 电平		
				代号	软件接口	
				М	Modbus F	UTY
					代号	模块上总线接口
					Ν	没有总线接口
MOD- PA -	M	Ň	Т	M	N	-选型示例

中 国 科 学 院 沈 阳 自 动 化 研 究 所 沈 阳 中 科 博 微 自 动 化 技 术 有 限 公 司 Http://www.microcyber.cn 地址:中国 ・ 沈阳 ・ 浑南新区文溯街 17-8 号 邮编:110179

电话: 0086-24-31217295 / 31217296

传真: 0086-24-31217293

EMAIL: sales@microcyber.cn