

G0307 Modbus 转 PA 网关 使用手册

沈阳中科博微自动化技术有限公司

MICROCYBER

公司简介

沈阳中科博徽自动化技术有限公司是由中国科学院沈阳自动化研究所发起创建的一家高新技术企业, 主要从事网络化控制系统、仪表、芯片及软件方面的研究、开发、生产和应用。公司同时承担着多个国家 科技攻关和 "863"项目,是辽宁省网络化控制系统工程研究中心。公司成功地开发出国内第一个通过国际 认证的 FF H1 现场总线协议栈,国内第一套工业以太网协议(HSE),国内第一个经过国家级本安防爆认证 的现场总线仪表及安全栅,参与制定了国内第一个基于以太网的工厂自动化协议标准(EPA),形成了从组 态、监控软件、嵌入式软件、控制系统、仪表芯片到 0EM 板卡的系列化产品。

博微公司是 FF 基金会成员; 是 HART 基金会成员; 是 Profibus 用户组织 (PNO) 成员。

博微公司通过了 IS09001: 2000 质量管理体系认证,拥有优秀的研发团队、丰富的自动化工程设计与 实施经验、业界领先的产品系列、庞大的市场网络、优秀的企业文化,这些都为公司的创业和持续发展奠 定了坚实基础。

承载员工理想,创造客户价值,促进企业发展。

博微公司正与前进的中国共同进步。

目 录

	\sim II \sim	
4.	6 网关循环组态	15
	4.5.2 Modbus 寄存器参数配置	14
	4.5.1 Modbus 通信参数配置	14
4.	5 Modbus 配置举例	13
	4.4.2 硬件设地址	13
	4.4.1 软件设地址	13
4.4	4 设置网关地址	13
	4.3.4 Modbus 变换块寄存器参数	11
	4.3.3 Modbus 变换块输入输出参数	10
	4.3.2 Modbus 变换块错误检查参数	. 9
	4.3.1 Modbus 变换块通信参数	. 9
4.	3 Modbus 变换块参数	. 7
4.:	2 功能块说明	. 7
4.	1 拓扑结构	. 6
第4章	网关配置	. 6
第3章	工作原理	. 5
	2.2.7 特殊功能接口	. 4
	2.2.6 LED 指示灯	. 4
	2.2.5 PROFIBUS 地址配置接口	. 4
	2.2.4 PROFIBUS PA 总线接口	. 4
	2.2.2 Modbus-R\$232 接口(适用于 GW-MODB-PA-R\$232)	. כ ג
	2.2.1 Woubus 电你按口(话田干 GW_MODB_DA PS/95)	. כ כ
Ζ.,	2 內大按□	د. د
2.	1 UIN 寸机女衣	. 3 ว
毋 Z 草 ~	·	. ქ ი
笠っ辛	1.2.2 网大结构图	. 2
	1.2.1 网天外形尺寸图	. 2
1.	2 外形结构	. 2
1.	1 设备分类	. 1
第1章	「概述	. 1
A.A. 3.	Loope A. R.	

G0307 MODBUS转PA网关使用手册

	4.6.1 GSD 文件说明	15
	4.6.2 安装 GSD 文件	17
	4.6.3 使用 GSD 文件	18
	4.6.4 行规 GSD 文件	19
第5章	维护	20
第6章	技术规格	21
6.1	基本参数	21
6.2	性能指标	21
6.3	物理特性	21
6.4	默认通讯参数	21
6.5	支持 Modbus 功能码	21
附录 1	G0307 Modbus 转 PA 网关选型代号表	22

第1章 概述

产品名称: Modbus 转 PA 网关

产品型号: G0307

此网关实现了 Modbus RTU 到 PROFIBUS PA 的转换功能。可以使多个符合 Modbus RTU 通信规则的从站 设备接入到 PROFIBUS DP 网络中。

图 1 G0307 Modbus 转 PA 网关示意图

1.1 设备分类

此网关根据 Modbus 接口不同分为两种型号:

产品选型	Modbus 接口
GW-MODB-PA-RS485	RS485
GW-MODB-PA -RS232	RS232

注意**:**

1) V1.0 版本仅实现了 GW-MODB-PA-RS485 版本,后续将增加 GW-MODB-PA-RS232 版本。

1.2 外形结构

1.2.1 网关外形尺寸图

图 2 网关外形尺寸图(112*70*50, 单位:mm)

1.2.2 网关结构图

图 3 网关结构图

1	贴膜	2	上盖	3	接口卡	4	六棱柱
5	宽沿螺钉	6	铁丝	7	卡子	8	宽沿螺钉
9	底座	10	通信卡				

第2章 安装

2.1 DIN 导轨安装

山科博微 MICROCYBER

图 4 网关 DIN 导轨安装示意图

2.2 网关接口

2.2.1 Modbus 电源接口

序号	端子名称	端子用途
1	24V	接 24V 直流电源正
2	G	接 24V 直流电源负
3	PE	接双绞线屏蔽

2.2.2 Modbus-RS485 接口(适用于 GW-MODB-PA-RS485)

ł	序号	端子名称	端子用途
	1	ТВ	与 B-短接使能终端
1	2	В-	接 Modbus 总线 B
	3	A+	接 Modbus 总线 A
ŧ	4	TA	与 A+短接使能终端
	5	PE	接双绞线屏蔽

2.2.3 Modbus-RS232 接口(适用于 GW-MODB-PA-RS232)

予 号	' '' '' '' '' '' '' '' '' '' '' '' '' '	ふうしん ふうしん ふうしん ふうしん ふうしん ふうしん ふうしん ふうしん 	
1	NC	空脚	
2	TxD	接用户设备 RxD	
3	RxD	接用户设备 TxD	
4	NC	空脚	
5	GND	接用户设备 GND	
6-9	NC	空脚	
注意:用户请根据接口定义自制 RS232 电缆。			

2.2.4 PROFIBUS PA 总线接口

序号	端子名称	端子用途
1	+	接 PROFIBUS PA 总线正
2	-	接 PROFIBUS PA 总线负
3	<i>i</i> hi	接 PROFIBUS PA 总线屏蔽线
4	NC	空脚
5	NC	空脚
	序号 1 2 3 4 5	序号 端子名称 1 + 2 - 3 <i>m</i> 4 NC 5 NC

2.2.5 PROFIBUS 地址配置接口

地址拨码开关	描述		
16 位旋钮拨码开关 x10	每个刻度代表 10,范围 0-160;		
10 位旋钮拨码开关 x1	每个刻度代表 1,范围 0-9;		
注意: 仅在地址使能开关为 ON 时,此功能才有效。			
当地址大于 125 时,固定地址为 125。			
加冈底云 抽起_2*10.7*	1_27		

如图所示,地址=3*10+7*1=37

2.2.6 LED 指示灯

Power Online Offline TxD RxD

指示灯名称	颜色	指示灯用途
Power	绿	Modbus 电源指示灯
Online	黄	PROFIBUS 进入数据交换
Offline	红	PROFIBUS 未进入数据交换
TxD	绿	Modbus 发送指示灯
RxD	黄	Modbus 接收指示灯

2.2.7 特殊功能接口

序号	端子名称	端子用途		
1	RST	复位开关。 ON时,重启设备,设备将彻底恢复默认值。 使用后,请置为OFF。		
2	WP	硬件写保护开关。 ON: 使能; OFF: 禁止。		
3	SIM	未使用		
4	ADDR_EN	地址使能开关。 ON:使用网关面板设定的地址 OFF:使用 Set Address 命令设定的地址		

第3章 工作原理

田村

MICROCYBER

G0307 Modbus 转 PA 网关,是同时支持 Modbus RTU 协议与 PROFIBUS PA 协议的网关设备。它本身作为 PROFIBUS PA 从站设备,最多可以使 4 个 Modbus 从站设备接入到 PROFIBUS PA 网络中。

图 5 网关系统连接示意图

G0307 Modbus 转 PA 网关,包含 1 个物理块、16 个功能块以及 1 个 Modbus 转换块。其中,Modbus 转换块包含了 4 个模拟量输入、4 个模拟量输出、4 个离散量输入以及 4 个离散量输出,这些数据(即 Modbus 设备数据)可以通过通道与功能块建立连接,从而达到协议转换的目的。

G0307 Modbus 转 PA 网关,对下将 Modbus 转换块作为 Modbus 主站与 Modbus 从站进行通信,对上将 Modbus 变换块的参数数据与功能块交互。从而起到将 Modbus 从站连接到 Profibus 系统当中去的作用。

第4章 网关配置

MICROCYBER

4.1 拓扑结构

一个 PROFIBUS PA 网络拓扑可以有各种不同的结构,如图 7 所示。图 8 给出了 PA 仪表的总线连接,总 线两端需要接入终端电阻保证总线信号的质量。总线最大长度为 1900 米,使用中继器可以延长到 10 公里。

图 8 PROFIBUS PA 总线连接

4.2 功能块说明

G0307 Modbus 转 PA 网关,包含 1 个物理块、4 个 AI 功能块、4 个 AO 功能块、4 个 DI 功能块、4 个 DO 功能块以及 1 个 Modbus 转换块。其中,每个 AI、AO、DI、DO 功能块都有 4 个通道,分别指向 Modbus 转换块的 4 个模拟量输入、4 个模拟量输出、4 个离散量输入以及 4 个离散量输出。

功能块名称	功能块描述
Physical Block	物理块(PB)。描述了设备特有的硬件信息和识别、诊断信息,包括设备位号,软件版本、硬件版本、安装日期等
Modbus Transducer Block	通过 Modbus 变换块可以配置 Modbus 通信参数,如波特率,停止位,通信超时等, Modbus 通信 配置参数。
Analog Input Block	模拟量输入功能块(AI)。通过内部通道从变换块获取来自于 Modbus 从设备的模拟过程值,对 其进行处理,并将适当的测量值通过总线通信提供给主站设备使用
Analog Output Block	模拟输出功能块(A0),用于将主站设备输出的数据通过内部通道传递给变换块,作用于 Modbus 从设备
Discrete Input Block	离散量输入功能块(DI),通过内部通道从变换块获取来自于 Modbus 从设备的输入数据,并将其通过总线通信提供给主站设备使用
Discrete Output Block	离散量输出功能块(DO),将主站设备设置的离散输出数据通过内部通道传递给变换块,作用于 Modbus 从设备

4.3 Modbus 变换块参数

下表描述了所有 Modbus 变换块的参数。

MICROCYBER

	表 1 Modbus 变换块参数属性表					
索 引	参数名称	数据类型	有效 范围	默认 值	存储 模式	功能描述
1	ST_REV	Unsigned16		0	S/RO	静态版本
2	TAG_DESC	OctString(32)		Spaces	S	位号
3	STRATEGY	Unsigned16		0	S	策略
4	ALERT_KEY	Unsigned8	1 to 255	0	S	报警
5	TARGET_MODE	Unsigned8		AUTO	S	目标模式
6	MODE_BLK	DS-37			D	当前模式
7	ALARM_SUM	DS-42			D	报警汇总
13	BAUD_RATE	Unsigned8	0-4	2	S	MDOBUS 通信波特率
						0:2400、1:4800、2:9600、3:14400、4:19200
14	STOP_BITS	Unsigned8	0-1	0	S	Modbus 通信停止位
						0: 1bit、1: 2bit
15	PARITY	Unsigned8	0-2	0	S	Modbus 通信校验位
						0: None、1: Even、2: Odd
16	CRC_ORDER	Unsigned8	0-1	0	S	CRC 高低字节交换,默认高字节在前
						0:No swap 1:Swap
17	TIME_OUT	Unsigned16		300	S	发送 Modbus 请求后,等待从站响应的最大时间,单
						位 ms,默认 300ms
18	NUMBER_OF_RETRY	Unsigned8	0-255	1	S	在等待响应超时后,重新发送请求的次数
19	SLAVE_ADDRESS	OctString(4)	0-255	1,2,3,4	S	包含网关最多支持的 4 个 Modbus 从设备地址
20	BAD_STATUS	Bitstring(4)			D/RO	32 输入输出命令的通信状态,某一位被置为1表示相应的命令没有得到响应,具体见下表关于该参数的描述

G0307 MODBUS转PA网关使用手册 32 输入输出命令负响应异常代码索引地址,例如 0 表 21 ERR LOOK SEL Unsigned8 0-31 0 D 示 MOD IN1 的负响应代码 32 输入输出命令负响应异常代码,由 22 ERR_LOOK_RESULT Unsigned8 0-255 0 D/RO EXP CODE NUMBER 指定索引 23 MOD IN1 101 D/RO 模拟量输入1 24 SCALE LOC IN1 DS-256 模拟量输入1配置 S 25 MOD IN2 101 D/RO 模拟量输入2 SCALE LOC IN2 DS-256 模拟量输入2配置 26 S MOD IN3 101 D/RO 模拟量输入3 27 28 SCALE LOC IN3 DS-256 S 模拟量输入3配置 29 MOD IN4 101 D/RO 模拟量输入4 模拟量输入4配置 SCALE LOC IN4 DS-256 S 30 31 MOD OUT1 101 D/RO 模拟量输出1 32 SCALE_LOC_OUT1 DS-256 S 模拟量输出1配置 模拟量输出 2 33 MOD OUT2 101 D/RO 模拟量输出2配置 34 SCALE LOC OUT2 DS-256 S 35 MOD OUT3 101 D/RO 模拟量输出3 SCALE LOC OUT3 DS-256 S 模拟量输出3配置 36 37 MOD OUT4 101 D/RO 模拟量输出4 模拟量输出4配置 38 SCALE LOC OUT4 DS-256 S 39 MOD IN D1 102 D/RO 离散量输入1 40 LOC IN D1 DS-257 S 离散量输入1配置 离散量输入2 41 MOD IN D2 102 D/RO 离散量输入2配置 42 LOC IN D2 DS-257 S 离散量输入3 43 MOD IN D3 102 D/RO 44 LOC IN D3 DS-257 S 离散量输入3配置 离散量输入4 45 MOD IN D4 102 D/RO 离散量输入4配置 46 LOC IN D4 DS-257 S 离散量输出1 47 MOD OUT D1 102 D/RO 48 LOC OUT D1 DS-257 S 离散量输出1配置 离散量输出2 49 MOD OUT D2 102 D/RO 离散量输出2配置 50 LOC_OUT_D2 DS-257 S MOD_OUT_D3 离散量输出3 51 102 D/RO 离散量输出3配置 52 LOC OUT D3 DS-257 S 离散量输出4 53 MOD_OUT_D4 102 D/RO 离散量输出4配置 LOC OUT D4 DS-257 54 S

其中索引 1-7 为标准参数,在本手册中不做过多描述。其余参数将在下文中详细描述。

4.3.1 Modbus 变换块通信参数

、中科博微

通过变换块可以配置 Modbus 通信参数,如波特率,停止位,通信超时等,Modbus 通信配置参数描述如下表。

索引	参数名称	功能描述
13	BAUD_RATE	波特率,0:2400,1:4800,2:9600(默认),3:14400,4:19200
14	STOP_BIT	停止位, 0:1个停止位, 1:2个停止位
15	PARITY	校验位, 0: 无校验位, 1: 偶校验, 2: 奇校验
16	CRC_ORDER	CRC 校验字节顺序, 0: 高字节在前, 1: 低字节在前
17	TIME_OUT	发送 Modbus 请求后,等待从站响应的最大时间,单位 ms,默认 300ms
18	NUMBER_OF_RETRY	在等待响应超时后,重新发送请求的次数,范围0-255
19	SLAVE_ADDRESS	包含网关最多支持的 4 个 Modbus 从设备地址,地址可相同,范围 0-255

表 2 Modbus 变换块通信参数描述

4.3.2 Modbus 变换块错误检查参数

4.3.2.1 BAD_STATUS 参数

索引 20。如果通信失败,相应的位被置为 1,否则为 0。

位	描述	位	描述		
0	MOD_IN1	16	MOD_IN_D1		
1	MOD_IN2	17	MOD_IN_D2		
2	MOD_IN3	18	MOD_IN_D3		
3	MOD_IN4	19	MOD_IN_D4		
4-7	N/A	20-23	N/A		
8	MOD_OUT1	24	MOD_OUT_D1		
9	MOD_OUT2	25	MOD_OUT_D2		
10	MOD_OUT3	26	MOD_OUT_D3		
11	MOD_OUT4	27	MOD_OUT_D4		
12-15	N/A	28-31	N/A		

表 3 BAD_STATUS 参数描述

4.3.2.2 ERR_LOOK_SEL 和 ERR_LOOK_RESULT 参数描述

ERR_LOOK_SEL(索引 21)和 ERR_LOOK_RESULT(索引 22),输入输出参数负响应数据查询功能,用户可以查询每个输入输出数据的响应值,使用 ERR_LOOK_SEL 选择要查询的某一个输入输出参数,读取 ERR_LOOK_RESULT 参数即可得到该参数的通信响应数据。ERR_LOOK_RESULT,0表示没有错误,0x01-0x0B 是 Modbus 标准的负响应数据,0x0A 表示主从站通信失败。

这两个参数的具体描述如下表:

数值	参数描述	数值	参数描述			
0	MOD_IN1	8	MOD_IN_D1			
1	MOD_IN2	9	MOD_IN_D 2			
2	MOD_IN3	10	MOD_IN_D 3			
3	MOD_IN4	11	MOD_IN_D 4			
4	MOD_OUT1	12	MOD_OUT_D1			

表 4 ERR_LOOK_SEL 参数描述

5	MOD_OUT2	13	MOD_OUT_D2
6	MOD_OUT3	14	MOD_OUT_D3
7	MOD_OUT4	15	MOD_OUT_D4

表 5 ERR_LOOK_RESULT 参数描述

响应码	描述
0x00	Ok
0x01	Illegal Function
0x02	Illegal Data Address
0x03	Illegal Data Value
0x04	Slave Device Failure
0x05	Acknowledge
0x06	Slave Device Busy
0x08	Memory Parity Error
0x0A	Gateway Path Unavailable
0x0B	Gateway Target Device Failed To Response
0xFD	Data Type Mismatch
OxFE	Function Code Mismatch
OxFF	Communication Failure

4.3.3 Modbus 变换块输入输出参数

Modbus 变换块提供 4 个模拟量输入、4 个模拟量输出、4 个离散量输入以及 4 个离散量输出参数。

索引	参数名称	数据类型	描述
23	MOD_IN1	101	模拟量输入,将从 Modbus 从站采集来的值和状态传输给 AI 功能块 1
25	MOD_IN2	101	模拟量输入,将从 Modbus 从站采集来的值和状态传输给 AI 功能块 2
27	MOD_IN3	101	模拟量输入,将从 Modbus 从站采集来的值和状态传输给 AI 功能块 3
29	MOD_IN4	101	模拟量输入,将从 Modbus 从站采集来的值和状态传输给 AI 功能块 4
31	MOD_OUT1	101	模拟量输出,将从 AO 功能块 1 来的设定值和状态传输给 Modbus 从站
33	MOD_OUT2	101	模拟量输出,将从 AO 功能块 2 来的设定值和状态传输给 Modbus 从站
35	MOD_OUT3	101	模拟量输出,将从 AO 功能块 3 来的设定值和状态传输给 Modbus 从站
37	MOD_OUT4	101	模拟量输出,将从 AO 功能块 4 来的设定值和状态传输给 Modbus 从站
39	MOD_IN_D1	102	离散量输入,将从 Modbus 从站采集来的值和状态传输给 DI 功能块 1
41	MOD_IN_D2	102	离散量输入,将从 Modbus 从站采集来的值和状态传输给 DI 功能块 2
43	MOD_IN_D3	102	离散量输入,将从 Modbus 从站采集来的值和状态传输给 DI 功能块 3
45	MOD_IN_D4	102	离散量输入,将从 Modbus 从站采集来的值和状态传输给 DI 功能块 4
47	MOD_OUT_D1	102	离散量输出,将从 DO 功能块 1 来的设定值和状态传输给 Modbus 从站
49	MOD_OUT_D2	102	离散量输出,将从 DO 功能块 2 来的设定值和状态传输给 Modbus 从站
51	MOD_OUT_D3	102	离散量输出,将从 DO 功能块 3 来的设定值和状态传输给 Modbus 从站
53	MOD_OUT_D4	102	离散量输出,将从 DO 功能块 4 来的设定值和状态传输给 Modbus 从站

表 6 输入输出参数描述

表 7 101 & 102 数据类型

数据类型	数据成员	成员数据类型	描述
VALUE	VALUE	Float	浮点值。
101	STATUS	Unsigned8	包含质量和状态两部分。
102	VALUE	Unsigned8	离散值。
102	STATUS	Unsigned8	包含质量和状态两部分。

4.3.4 Modbus 变换块寄存器参数

田棹博微

MICROC

Modbus 变换块提供的 4 个模拟量输入、4 个模拟量输出、4 个离散量输入以及 4 个离散量输出参数, 这些参数可以被关联到某个 Modbus 寄存器,并且按照指定的数据类型进行数据交换。Modbus 寄存器配置 参数分为模拟量输入输出配置参数和离散量输入输出配置参数,其中模拟量比离散量增加了量程转换(也 叫线性变换)功能。

索引	参数名称	数据类型	描述
24	SCALE_LOC_IN1	DS-256	模拟量输入1配置
26	SCALE_LOC_IN2	DS-256	模拟量输入2配置
28	SCALE_LOC_IN3	DS-256	模拟量输入3配置
30	SCALE_LOC_IN4	DS-256	模拟量输入4配置
32	SCALE_LOC_OUT1	DS-256	模拟量输出1配置
34	SCALE_LOC_OUT2	DS-256	模拟量输出 2 配置
36	SCALE_LOC_OUT3	DS-256	模拟量输出3配置
38	SCALE_LOC_OUT4	DS-256	模拟量输出4配置
40	LOC_IN_D1	DS-257	离散量输入1配置
42	LOC_IN_D2	DS-257	离散量输入2配置
44	LOC_IN_D3	DS-257	离散量输入3配置
46	LOC_IN_D4	DS-257	离散量输入4配置
48	MOD_OUT_D1	DS-257	离散量输出1配置
50	MOD_OUT_D2	DS-257	离散量输出2配置
52	MOD_OUT_D3	DS-257	离散量输出3配置
54	MOD_OUT_D4	DS-257	离散量输出4配置

表 8 输入输出配置参数描述

4.3.4.1 MOD_SCALE_LOC_PARM 模拟量输入输出配置参数结构(DS-256)

该新增数据类型 DS-256 是模拟量输入输出配置参数,可以实现 PA 浮点数据和 Modbus 寄存器数据的转换, DATA_TYPE 数据类型参数指示 Modbus 寄存器数据为何种数据类型,并通过 FROM_EU100, FROM_EU0, TO_EU100 和 TO_EU0 对 Modbus 寄存器数据进行线性转换并赋给 PA 浮点数据或者将 PA 浮点数据转换为 DATA_TYPE 指定的数据类型写入 Modbus 寄存器。

数据成员	数据类型	力能描述 功能描述		
FROM_EU100	FLOAT	输入量程上限		
FROM_EU0	FLOAT	输入量程下限		
TO_EU100	FLOAT	输出量程上限		
TO_EU0	FLOAT	输出量程下限		
	USIGN8	数据类型参数,具体描述见关于 DATA_TYPE 格式的说明		
DATA_TTPE		表 10 DATA_TYPE 参数描述		
SLAVE_ADDRESS	USIGN8	Modbus 从站地址,范围 0-255		
		Modbus 功能码,指示该命令使用哪一种功能码进行通信,具体描述见表 13		
FONCTION_CODE	USIGIN8	FUNCTION_CODE 参数描述		
REGISTER_ADR_OF_VALUE	USIGN16	模拟量参数的数值对应的 Modbus 寄存器地址		
REGISTER_ADR_OF_STATUS	USIGN16	模拟量参数的质量状态对应的 Modbus 寄存器地址		

表 9 DS-256 数据成员描述

4.3.4.1.1 关于 DATA_TYPE 格式的说明

Φ

MICROC

	表 10 DATA_TYPE 参数描述					
索引	名称	数据类型	数据长度	有效范围	其他	
1	Float_0123	单精度浮点	4		仅模拟量输入输出参数支持	
2	Float_1032	单精度浮点	4		仅模拟量输入输出参数支持	
3	Float_3210	单精度浮点	4		仅模拟量输入输出参数支持	
4	Float_2301	单精度浮点	4		仅模拟量输入输出参数支持	
5	Unsigned8_0	无符号整型	1	0 - 255		
6	Unsigned8_1	无符号整型	1	0 - 255		
7	Unsigned16_01	无符号短整型	2	0 - 65535	仅模拟量输入输出参数支持	
8	Unsigned16_10	无符号短整型	2	0 - 65535	仅模拟量输入输出参数支持	
9	Unsigned32_0123	无符号长整型	4	0 - 4294967295	仅模拟量输入输出参数支持	
10	Unsigned32_1032	无符号长整型	4	0 - 4294967295	仅模拟量输入输出参数支持	
11	Unsigned32_3210	无符号长整型	4	0 - 4294967295	仅模拟量输入输出参数支持	
12	Unsigned32_2301	无符号长整型	4	0 - 4294967295	仅模拟量输入输出参数支持	
13	Signed8_0	有符号整型	1	-128 - 127	仅模拟量输入输出参数支持	
14	Signed8_1	有符号整型	1	-128 - 127	仅模拟量输入输出参数支持	
15	Signed16_01	有符号短整型	2	-32768 - 32767	仅模拟量输入输出参数支持	
16	Signed16_10	有符号短整型	2	-32768 - 32767	仅模拟量输入输出参数支持	
17	Signed32_0123	有符号长整型	4	-2,147,483,648 - 2,147,483,647	仅模拟量输入输出参数支持	
18	Signed32_1032	有符号长整型	4	-2,147,483,648 - 2,147,483,647	仅模拟量输入输出参数支持	
19	Signed32_3210	有符号长整型	4	-2,147,483,648 - 2,147,483,647	仅模拟量输入输出参数支持	
20	Signed32_2301	有符号长整型	4	-2,147,483,648 - 2,147,483,647	仅模拟量输入输出参数支持	

上述数据类型表格中,数据类型 DataType_abcd 的后缀 abcd 代表该数据在 Modbus 从站寄存器中的顺序号,0代表第一个寄存器中的低 8 位数据,1代表第一个寄存器中的高 8 位数据,2代表第二个寄存器中的高 8 位数据。网关内存采用小端模式,所以 Unsigned32_0123 表示将 Modbus 从站寄存器的数据按照原来的顺序依次赋值给网关中的长整型变量,而 Unsigned32_1032 则将 Modbus 从站每个寄存器的数据交换高低字节后赋值给网关中的长整型变量。

4.3.4.1.2 关于参数的质量状态和 REGISTER_ADR_OF_STATUS 的关系

REGISTER_ADR_OF_STATUS 为 0 时(默认),表示被配置为无效的寄存器地址,否则视为有效的寄存器地址。

参数	REGISTER_ADR_OF_STATUS 配置无效(默认)	REGISTER_ADR_OF_STATUS 配置有效					
模拟量输入/ 离散量输入	如果 Modbus 通信正常,参数的质量状态为"GOOD NON-CASCADE",否则参数的质量状态为"BAD NO COMMUNICATION WITH LAST VALUE"。	网关通过 Modbus 通信从 Modbus 从站读取相应地址的 数据,并取低 8 位的数据作为参数的质量状态,高 8 位 的数据被忽略。					
模拟量输出/ 离散量输出	网关不会通过 Modbus 发送任何参数状态的数据给 Modbus 从站。	网关通过 Modbus 发送数据给仪表卡相应地址的寄存器,参数的质量状态将占用寄存器数据的低 8 位,高 8 位被置为 0。					

表 11 参数的质量状态和 REGISTER_ADR_OF_STATUS 的关系

4.3.4.2 MOD_LOC_PARM 离散量输入输出配置参数结构(DS-257)

• 中科博微

MICROCYBER

该新增数据类型 DS-257 是离散量输入输出配置参数,可以实现对 PA 离散数据和 Modbus 寄存器数据的 转换,数据类型 DATA_TYPE 只支持 Unsigned8_0 和 Unsigned8_1 类型,对于 Usigned8_0 类型,寄存器数据 的低 8 位字节和 PA 离散量参数对应,对于 Unsigned8_1 类型,寄存器数据的高 8 位字节和 PA 离散量参数对应。

表 12 DS-257 数据成员描述

数据成员	数据类型	功能描述
DATA_TYPE	USIGN8	数据类型参数,具体描述见关于 DATA_TYPE 格式的说明
		表 10 DATA_TYPE 参数描述
SLAVE_ADDRESS	USIGN8	Modbus 从站地址,范围 0-255
FUNCTION_CODE	USIGN8	Modbus 功能码,指示该命令使用哪一种功能码进行通信,具体描述见表 13
		FUNCTION_CODE 参数描述
REGISTER_ADR_OF_VALUE	USIGN16	离散量参数的数值对应的 Modbus 寄存器地址
REGISTER_ADR_OF_STATUS	USIGN16	离散量参数的质量状态对应的 Modbus 寄存器地址
		注: 命令为读写线圈时,设置此地址无效。

4.3.4.3 FUNCTION_CODE 参数

表 13 FUNCTION_CODE 参数描述

功能码	名称	其他
0	No Command	默认值
1	FC01 Read Coils	仅离散量输入支持
2	FC02 Read Discrete Input	仅离散量输入支持
3	FC03 Read Holding Register	模拟量输入、离散量输入支持
4	FC04 Read Input Register	模拟量输入、离散量输入支持
5	FC05 Write Single Coils	仅离散量输出支持
6	FC06 Write Single Register	模拟量输出、离散量输出支持
16	FC16 Write Multiple Register	仅模拟量输出支持

4.4 设置网关地址

网关地址设置有两种方式:软件设地址、硬件设地址。

4.4.1 软件设地址

首先,要将特殊功能接口第4位置为OFF,才能使用软件设地址。设定后,重启设备(即重新连接 PA 总线),就可以通过任意主站发送 Set_Address 服务来修改网关地址了。

4.4.2 硬件设地址

首先,要将特殊功能接口第 4 位置为 ON,使能硬件设地址功能。设定后,重启设备(即重新连接 PA 总线),用户即可使用网关前面板上的两个旋钮拨码开关来设置地址了。

4.5 Modbus 配置举例

配置此网关设备需要使用西门子 PDM 软件来实现,我们将提供此网关设备的 EDD 文件。用户需要将该 网关的 EDD 文件导入到西门子 PDM 软件后才可实现配置操作。

~ 13 ~

导入 EDD 文件的具体方法请参考 EDD 文件夹中的 doc 文件夹里的文档。下面介绍的配置均基于正确导入 EDD 文件后的操作。

4.5.1 Modbus 通信参数配置

选择 Device->Modbus Configuration->Modbus Communication Setting 菜单,将调出如下界面:

Bodbus Communi	ication Setting4	#10_ (Online)		X
Modbus Communi	cation Setting			
Target Mode	AUTO	Parity	Odd 💌	
Actual Mode	AUTO 🔽	CRC Order	Normal	
Baud Rate	2400 💌	Time Out	300 ms	
Stop Bits	One Stop Bit 🔹	Number Of Retry	1	
		Slave Address 1	1	
		Slave Address 2	2	
		Slave Address 3	3	
		Slave Address 4	4	
		Tr	ansfer	
Close	Messages		Help	

图 9 Modbus 通信参数配置界面

通过此界面,可修改 Modbus 总线的波特率、停止位、校验位、Modbus CRC16、每条 Modbus 指令的响应超时时间、重试次数以及至多 4 个 Modbus 从设备地址。

注意:这里只是配置了至多 4 个 Modbus 从设备地址,没有配置从哪个设备去读取哪些寄存器。如果某 一地址没有配置寄存器是不会往该地址发送任何指令的。

Slave Address 1 管理模拟量输入 1、模拟量输出 1、离散量输入 1 以及离散量输出 1。同理, Slave Address 2 管理模拟量输入 2、模拟量输出 2、离散量输入 2 以及离散量输出 2,以此类推。

4.5.2 Modbus 寄存器参数配置

选择 Device->Modbus Configuration 菜单项,其中有 4 个子菜单分别为 Modbus Analog Input、 Modbus Analog Output、 Modbus Discrete Input 以及 Modbus Discrete Output,每一项中包含 4 个输入/输出项。

下面以 Modbus Analog Input 为例,其中包含 4 个模拟量输入,我们讲解一下如何配置第一个模拟量输入。

选择 Device->Modbus Configuration->Modbus Analog Input 菜单, 进入 Modbus Mod In 1 菜单, 界面如下:

G0307 MODBUS转PA网关使用手册

odbus Analog Input - _#10_ (Changed)

田村

Modbus Mod In 1 Mod	bus Mod In 2 Modbus Mod In 3 Modbus Mod In 4		
Analog Input 1		Scale Location In 1-	
Mod_In1	0	From EU at 100%	100
Quality	Good	From EU at 0%	0
Status	ОК	To EU at 100%	100
Error Lookup		To EU at 0%	0
Err Look Sel	Mod_In1	Data Type	Float_3210 💌
Err Look Result	Ok	Slave Address	1
		Function Code	No Command
		Register Addr Of Valu	ue 0
		Register Addr Of Stat	tus 0
		Transfer	
Close Messag	ges		Help

图 10 Modbus 模拟量输入 1 寄存器参数配置界面

如上图所示,此界面大概分为三个部分:模拟量输入值 1 的值及其质量状态、错误查询以及模拟量输入值 1 的配置部分。

其他模拟量输入输出、离散量输入输出的界面也大致相同。

其中,值及其质量状态部分为只读,可通过此部分查看 Modbus 上传的数据是否正确;

错误查询部分可配置,可设为任意 16 个 Modbus 数据(4 个模拟量输入、4 个模拟量输出、4 个离散量 输入以及 4 个离散量输出),查看其状态。

配置部分,可设置当前值的输入输出范围,数据类型,功能码以及寄存器地址等。

注意:本网关所配置的寄存器地址均为真实的寄存器地址,不是寻址地址;

状态所的对应的寄存器地址,如果用户不能上传符合 PA 行规的状态值,不建议使用,建议设置为 0。 此处的 Slave Address 为只读,如要修改,请到 Modbus 通信参数配置处修改。

4.6 网关循环组态

4.6.1 GSD 文件说明

Profibus 网络主站通过 GSD 文件执行设备初始化进程。GSD 文件中包含了软硬件版本、总线波特率、循环数据交换相关信息等。

本网关支持两个 GSD 文件: 厂商 GSD 文件以及行规 GSD 文件。下面主要介绍厂商 GSD 文件。

网关包含的 16 个功能块均可以跟 1 类主站进行循环数据交换服务。用户需要对这些功能块的模块进行 组态。

G0307 MODBUS转PA网关使用手册

	えんしん あんしん あんしん 表表	€ 14 GSD Mc	odule
功能块	模块名称	模块编号	组态数据
空模块	EMPTY_MODULE	1	0x00
AI 功能块	Analog Input (AI)	2	0x42,0x84,0x08,0x05
	SP	3	0x82,0x84,0x08,0x05
	SP+READBACK+POS_D	4	0xC6, 0x84, 0x86, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05
	SP+CHECKBACK	5	0xC3, 0x84, 0x82, 0x08, 0x05, 0x0A
小小能性	SP+READBACK+POS_D+CHECKBACK	6	0xC7, 0x84, 0x89, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05, 0x0A
AU功能失	RC_IN+RC_OUT	7	0xC4, 0x84, 0x84, 0x08, 0x05, 0x08, 0x05
	RC_IN+RC_OUT+CHECKBACK	8	0xC5, 0x84, 0x87, 0x08, 0x05, 0x08, 0x05, 0x0A
	SP+RC_IN+RB+RC_OUT+POS_D+CB	9	0xCB, 0x89, 0x8E, 0x08, 0x05, 0x08, 0x05, 0x08, 0x05, 0x08,
			0x05, 0x05, 0x05, 0x0A
DI 功能块	OUT_D	10	0x91
	SP_D	11	0xA1
	SP_D+RB_D	12	0xC1, 0x81, 0x81, 0x83
DO 功能块	SP_D+CB_D	13	0xC1, 0x81, 0x82, 0x92
	SP_D+RB_D+CB_D	14	0xC1, 0x81, 0x84, 0x93
	RC_IN_D+RC_OUT_D	15	0xC1, 0x81, 0x81, 0x8C
	RC_IN_D+RC_OUT_D+CB_D	16	0xC1, 0x81, 0x84, 0x9C
	SP_D+RC_IN_D+RB_D+RC_OUT_D+CB_D	17	0xC1, 0x83, 0x86, 0x9F

注: RB = READBACK, CB = CHECKBACK, RC_OUT = RCAS_OUT, RC_IN = RCAS_IN

每个功能块占用一个槽, 每个槽可以有多种模块选择。

表 15 GSD 输入输出数据组态表

槽号(Slot)	功能块	默认模块	可选模块
1	AI 功能块 1	2	1,2
2	AI 功能块 2	2	1,2
3	AI 功能块 3	2	1,2
4	AI 功能块 4	2	1,2
5	AO 功能块 1	3	1,3,4,5,6,7,8,9
6	AO 功能块 2	3	1,3,4,5,6,7,8,9
7	AO 功能块 3	3	1,3,4,5,6,7,8,9
8	AO 功能块 4	3	1,3,4,5,6,7,8,9
9	DI 功能块 1	10	1,10
10	DI 功能块 2	10	1,10
11	DI 功能块 3	10	1,10
12	DI 功能块 4	10	1,10
13	DO 功能块 1	11	1,11,12,13,14,15,16,17
14	DO 功能块 2	11	1,11,12,13,14,15,16,17
15	DO 功能块 3	11	1,11,12,13,14,15,16,17
16	DO 功能块 4	11	1,11,12,13,14,15,16,17

4.6.2 安装 GSD 文件

以西门子 STEP 7 软件为例,选择任意工程,打开硬件组态界面,选择"Options→Install GSD File..."选项,将打开导入 GSD 文件窗口。

Install GSD Files		×
Install GSD Files:	from the directory 🔽 trator\桌面\GO307\GSD	<u>B</u> rowse
File Release Version	Languages	
MCYBOEFA.gsd	Default	
	,,,	
	Select All Deselect All	
Close		Help

图 11 导入 GSD 文件窗口

点击 "Browse...",选择 GSD 文件所在路径,将会罗列出当前路径下的所有 GSD 文件。选择需要导入的 GSD 文件,然后点击 "Install"。一直点击 "Yes",直到出现图 12 为止。

图 12 导入成功

4.6.3 使用 GSD 文件

安装好 GSD 文件后,网关将会出现在硬件组态界面的右侧树形列表中。

🙀 MT Config - [SIMATIC 300(1) (Configuration) NO307]		
🛤 Station Edit Insert FLC Yiew Options Window Melp		_ <u>-</u> = ×
⇒ 00) UR	-	
1 PS 307 2A PROFIBUS (1): DP master system (1)		Eind: Mt Mi
2 CPU 315-2 DP		Profil Standard
3		ROFIBUS DP
		- W PROFIBUS-PA
		H Converter
		🕫 🦳 Discrete Input
		🖶 🦲 Discrete Output
		- 🗀 Indicator
		🕀 🧰 Remote I/O
		🕀 🛄 Sensors
		ABB
		H Indressthauser
		Higrogram
		E Converter
	.	😐 🚠 G0307
		🕀 🦲 Tenperature
	=!	🖲 🧰 Microcyber Inc.
(0) UR		🕀 🛄 Power-Genex Ltd.
	. 1	🕀 🛄 Sierra
S Module 0 F M I Q Comment	1	Actuator 1 AU (Phy MBP)
PS 307 2A GEST	- 1	H Analyzer (Thy MDF)
	- 1	E Discrete Output 1 DD (Pby MBP)
	- /	Flow 1 AI 1 TOT (Phy MBP)
	- 1	🕀 🚰 Flow 2 AI 1 TOT (Phy MBP)
5	-	🕀 \overline{\overline{\mathbf{a}}} Flow 3 AI 1 TOT (Phy MBP)
6	- 1	🖲 🚡 Multi Variable (Phy MBP) 🛛 🚽
7		🗄 🚡 Positioner TZIDC-110/210
8	- 1	Transmitter 1 AI (Phy MBP)
9	- /	Transmitter 15 AI (Phy MBP)
	- 1	Transmitter 2 AL (Thy MBF)
	- 1	Transmitter 4 AT (Phy MBP)
		Transmittar 5 AT (Phy MRP)
	1	Modbus to PA Module, PROFIBUS PA Profile T
		3.02 with 16 function block: 4AI, 4AO,
		(35
TUSEL (100 Dozzibre		Jung

图 13 正确安装的设备

拖拽网关到 DP 总线上。将会自动弹出属性窗口。配置网关地址为您所需的地址。在这里我使用地址 85。

Properties - PROFIBUS interface G0307	×
General Parameters	
Address: 35 🔀	
Transmission rate: 45.45 (31.25) Kbps	
Subnet:	
not networked PROWTRUS(1) 45 45 (31 25) Khos	<u>N</u> ew
	Properties
	Delete
OK	ncel Help

图 14 配置设备属性

点击"OK",完成网关的添加。

选中组态图中的网关,在视图左下方将会出现该设备的组态配置,如下图所示:

山科博微 G0307 MODBUS转PA网关使用手册 MICROCYBER 📲 HY Config - [SIMATIC 300(1) (Configuration) -- M M Station Edit Insert FLC View Options Window Help _ 8 × - ∎0307] D 😂 So 🔍 🐘 🎒 🐁 🗈 🚵 🏜 🚯 📼 🐮 👀 ٠ ㅋㅋ 5 nt ni Find: PS 307 2A CPV 315-2 DP D^P PROFIBUS(1): DP Profil Standard • (85) G030 12 PROFIBUS DP By PROFING DF PROFING DF PACTING-FA Discrete Suput Discrete Suput Discrete Output Indicator Remote I/O Sancors ABB Discrete Output Plos Postiter SAI (PM WEP) Discrete AI (PM WEP) Discrete SAI (PM WEP) Distructure SAI (PM WEP) Discrete SAI (P • G0307 (85) 60307 Q Address | Conmen S... DP ID Order Number / Designation I Add. 1 Analog Input (AI) 260 66 66 Analog Input (AI) Analog Input (AI) 261...265 4 66 inalog Input (AI) 71...275 256...260 261...265 266...270 271...275 130 ...277 ...279 ...281 ...283 145 145 145 145 145 161 OVT_D OVT_D OVT_D OVT_D SP_D SP_D 9 10 11 12 13 14 76...277 78...279 80...281 82...283 Modbus to PA Module, PROFIBUS PA Profile 3.02 with 16 function block: 4AI, 4AO, 4DI, 4DO ₹ SP_D SP_D 15 161 16 161 Insertion possible

图 15 设备组态配置

在进行硬件组态时,用户根据实际需求,做相应的组态调整,从而形成网关的输入输出数据的组态信息。每个模块选项的具体含义见 4.6.1。

4.6.4 行规 GSD 文件

除了本网关指定的 GSD 文件外,用户还可以使用行规定义好的 GSD 文件: pa139760.gsd。 但注意,由于设备每个槽所放的模块已经规定好(参见表 15),所以仅当配置正确时,才能正常工作。

第5章 维护

● 简单维护

LED 指示灯	颜色	正常状态	异常状态	异常原因	纠正方法					
	(供电故障	检查供电电源及连接					
Power	绿	吊売	火	内部故障	联系技术支持					
				组态错误	检测硬件组态是否存在异常或未组 态					
Online	黄	常亮	灭	地址错误	检测是否使能硬件设地址,地址是 否与组态匹配					
				供电故障	检测 PA 总线是否有电					
				内部故障	联系技术支持					
		灭			组态错误	检测硬件组态是否存在异常或未组 态				
Offline	红		亮	地址错误	检测是否使能硬件设地址,地址是 否与组态匹配					
				供电故障	检测 PA 总线是否有电					
				内部故障	联系技术支持					
				未接从设备	正确连接从设备					
	43	闪烁	न	配置错误	检测是否正确配置转换块参数					
IXD	琢		闪烁	内烁 火	闪烁	火	火	闪烁 火	供电故障	检查供电电源及连接
				内部故障	联系技术支持					
R-D		黄 闪烁		未接从设备	正确连接从设备					
	黄		灭	配置错误	检测是否正确配置转换块参数					
				供电故障	检查供电电源及连接					
				内部故障	联系技术支持					

表 16 LED 指示灯状态表

● 日常维护只限于清洁设备。

● 故障维修:发现故障,请返厂维修。

第6章 技术规格

6.1 基本参数

总线供电	9~32VDC
Modbus 供电	24VDC(±20%)
电流消耗	≤ 14mA
工作温度	-20℃~70℃
贮存温度	-40°C∼70°C
湿度范围	5%~95%RH
Modbus 物理接口	RS485 (可配置终端)/ RS232

6.2 性能指标

防护等级	外壳防护等级达到IP20
电磁兼容	符合 GB/T 18268.1-2010《测量、控制和实验室用的电设备 电磁兼容性要求 第1部分:通用要求》 中工业场所的抗扰度要求 FF 端口测试方法采用 GB/T 18268.23-2010 《测量、控制和实验室用的电设备 电磁兼容性要求 第 23 部分: 特殊要求 带集成或远程信号调理变送器的试验配置、工作条件和性能判据》

6.3 物理特性

重量	0.2kg			
ム ナ 1/1 + 1 米1	壳体: ABS; 卡子: POM;			
拓 构材料	涂层:聚脂环氧树脂。			

6.4 默认通讯参数

从站地址	1, 2, 3, 4
波特率	9600
数据位	8
停止位	1
校验	无校验
CRC 校验	高字节在前

6.5 支持 Modbus 功能码

1	读线圈状态
2	读离散输入状态
3	读保持寄存器值
4	读输入寄存器值
5	写单个线圈
6	写单个寄存器
16	写多个寄存器值

附录 1 G0307 Modbus 转 PA 网关选型代号表

GW-MODB-PA		G0307 Modbus 转 PA 网关		
		代号	Modbus 物理接口	
		RS485	RS485 接口	
		RS232	RS232 接口	
GW-M	ODB-PA	- RS485	——选型示例	

中 国 科 学 院 沈 阳 自 动 化 研 究 所 沈 阳 中 科 博 微 自 动 化 技 术 有 限 公 司 Http://www.microcyber.cn 地址:中国 ・ 沈阳 ・ 浑南新区文溯街 17-8 号 邮编: 110179

电话: 0086-24-31217295 / 31217296

传真: 0086-24-31217293

EMAIL: sales@microcyber.cn